Kristin Michel
Kansas State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristin Michel.
Science | 2010
Peter Arensburger; Karine Megy; Robert M. Waterhouse; Jenica Abrudan; Paolo Amedeo; Beatriz García Antelo; Lyric C. Bartholomay; Shelby Bidwell; Elisabet Caler; Francisco Camara; Corey L. Campbell; Kathryn S. Campbell; Claudio Casola; Marta T. Castro; Ishwar Chandramouliswaran; Sinéad B. Chapman; Scott Christley; Javier Costas; Eric Eisenstadt; Cédric Feschotte; Claire M. Fraser-Liggett; Roderic Guigó; Brian J. Haas; Martin Hammond; Bill S. Hansson; Janet Hemingway; Sharon R. Hill; Clint Howarth; Rickard Ignell; Ryan C. Kennedy
Closing the Vector Circle The genome sequence of Culex quinquefasciatus offers a representative of the third major genus of mosquito disease vectors for comparative analysis. In a major international effort, Arensburger et al. (p. 86) uncovered divergences in the C. quinquefasciatus genome compared with the representatives of the other two genera Aedes aegypti and Anopheles gambiae. The main difference noted is the expansion of numbers of genes, particularly for immunity, oxidoreductive functions, and digestive enzymes, which may reflect specific aspects of the Culex life cycle. Bartholomay et al. (p. 88) explored infection-response genes in Culex in more depth and uncovered 500 immune response-related genes, similar to the numbers seen in Aedes, but fewer than seen in Anopheles or the fruit fly Drosophila melanogaster. The higher numbers of genes were attributed partly to expansions in those encoding serpins, C-type lectins, and fibrinogen-related proteins, consistent with greater immune surveillance and associated signaling needed to monitor the dangers of breeding in polluted, urbanized environments. Transcriptome analysis confirmed that inoculation with unfamiliar bacteria prompted strong immune responses in Culex. The worm and virus pathogens that the mosquitoes transmit naturally provoked little immune activation, however, suggesting that tolerance has evolved to any damage caused by replication of the pathogens in the insects. The genome of a third mosquito species reveals distinctions related to vector capacities and habitat preferences. Culex quinquefasciatus (the southern house mosquito) is an important mosquito vector of viruses such as West Nile virus and St. Louis encephalitis virus, as well as of nematodes that cause lymphatic filariasis. C. quinquefasciatus is one species within the Culex pipiens species complex and can be found throughout tropical and temperate climates of the world. The ability of C. quinquefasciatus to take blood meals from birds, livestock, and humans contributes to its ability to vector pathogens between species. Here, we describe the genomic sequence of C. quinquefasciatus: Its repertoire of 18,883 protein-coding genes is 22% larger than that of Aedes aegypti and 52% larger than that of Anopheles gambiae with multiple gene-family expansions, including olfactory and gustatory receptors, salivary gland genes, and genes associated with xenobiotic detoxification.
Journal of Insect Physiology | 2013
Jeffrey G. Scott; Kristin Michel; Lyric C. Bartholomay; Blair D. Siegfried; Wayne B. Hunter; Guy Smagghe; Kun Yan Zhu; Angela E. Douglas
RNA interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that the efficiency of RNAi varies between different species, the mode of RNAi delivery, and the genes being targeted. There is also variation in the duration of transcript suppression. At present, we have a limited capacity to predict the ideal experimental strategy for RNAi of a particular gene/insect because of our incomplete understanding of whether and how the RNAi signal is amplified and spread among insect cells. Consequently, development of the optimal RNAi protocols is a highly empirical process. This limitation can be relieved by systematic analysis of the molecular physiological basis of RNAi mechanisms in insects. An enhanced conceptual understanding of RNAi function in insects will facilitate the application of RNAi for dissection of gene function, and to fast-track the application of RNAi to both control pests and develop effective methods to protect beneficial insects and non-insect arthropods, particularly the honey bee (Apis mellifera) and cultured Pacific white shrimp (Litopenaeus vannamei) from viral and parasitic diseases.
EMBO Reports | 2005
Kristin Michel; Aidan Budd; Sofia B. Pinto; Toby J. Gibson; Fotis C. Kafatos
We report on a phylogenetic and functional analysis of genes encoding three mosquito serpins (SRPN1, SRPN2 and SRPN3), which resemble known inhibitors of prophenoloxidase‐activating enzymes in other insects. Following RNA interference induction by double‐stranded RNA injection, knockdown of SRPN2 in adult Anopheles gambiae produced a notable phenotype: the appearance of melanotic pseudotumours, which increased in size and number with time, indicating spontaneous melanization and association with an observed lifespan reduction. Furthermore, knockdown of SRPN2 strongly interfered with the invasion of A. gambiae midguts by the rodent malaria parasite Plasmodium berghei. It did not affect ookinete formation, but markedly reduced oocyst numbers, by 97%, as a result of increased ookinete lysis and melanization.
Science | 2010
Lyric C. Bartholomay; Robert M. Waterhouse; George F. Mayhew; Corey L. Campbell; Kristin Michel; Zhen Zou; Jose L. Ramirez; Suchismita Das; Kanwal S. Alvarez; Peter Arensburger; Bart Bryant; Sinéad B. Chapman; Yuemei Dong; Sara M. Erickson; S. H. P. Parakrama Karunaratne; Vladimir Kokoza; Chinnappa D. Kodira; Patricia Pignatelli; Sang Woon Shin; Dana L. Vanlandingham; Peter W. Atkinson; Bruce W. Birren; George K. Christophides; Rollie J. Clem; Janet Hemingway; Stephen Higgs; Karine Megy; Hilary Ranson; Evgeny M. Zdobnov; Alexander S. Raikhel
Closing the Vector Circle The genome sequence of Culex quinquefasciatus offers a representative of the third major genus of mosquito disease vectors for comparative analysis. In a major international effort, Arensburger et al. (p. 86) uncovered divergences in the C. quinquefasciatus genome compared with the representatives of the other two genera Aedes aegypti and Anopheles gambiae. The main difference noted is the expansion of numbers of genes, particularly for immunity, oxidoreductive functions, and digestive enzymes, which may reflect specific aspects of the Culex life cycle. Bartholomay et al. (p. 88) explored infection-response genes in Culex in more depth and uncovered 500 immune response-related genes, similar to the numbers seen in Aedes, but fewer than seen in Anopheles or the fruit fly Drosophila melanogaster. The higher numbers of genes were attributed partly to expansions in those encoding serpins, C-type lectins, and fibrinogen-related proteins, consistent with greater immune surveillance and associated signaling needed to monitor the dangers of breeding in polluted, urbanized environments. Transcriptome analysis confirmed that inoculation with unfamiliar bacteria prompted strong immune responses in Culex. The worm and virus pathogens that the mosquitoes transmit naturally provoked little immune activation, however, suggesting that tolerance has evolved to any damage caused by replication of the pathogens in the insects. The genome of a third mosquito species reveals distinctions related to vector capacities and habitat preferences. The mosquito Culex quinquefasciatus poses a substantial threat to human and veterinary health as a primary vector of West Nile virus (WNV), the filarial worm Wuchereria bancrofti, and an avian malaria parasite. Comparative phylogenomics revealed an expanded canonical C. quinquefasciatus immune gene repertoire compared with those of Aedes aegypti and Anopheles gambiae. Transcriptomic analysis of C. quinquefasciatus genes responsive to WNV, W. bancrofti, and non-native bacteria facilitated an unprecedented meta-analysis of 25 vector-pathogen interactions involving arboviruses, filarial worms, bacteria, and malaria parasites, revealing common and distinct responses to these pathogen types in three mosquito genera. Our findings provide support for the hypothesis that mosquito-borne pathogens have evolved to evade innate immune responses in three vector mosquito species of major medical importance.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Kristin Michel; Chansak Suwanchaichinda; Isabelle Morlais; Louis Lambrechts; Anna Cohuet; Parfait Awono-Ambene; Frédéric Simard; Didier Fontenille; Michael R. Kanost; Fotis C. Kafatos
Serpins are central to the modulation of various innate immune responses in insects and are suspected to influence the outcome of malaria parasite infection in mosquito vectors. Three Anopheles gambiae serpins (SRPN1, -2, and -3) were tested for their ability to inhibit the prophenoloxidase cascade, a key regulatory process in the melanization response. Recombinant SRPN1 and -2 can bind and inhibit a heterologous phenoloxidase-activating protease and inhibit phenoloxidase activation in vitro. Using a reverse genetics approach, we studied the effect of SRPN2 on melanization in An. gambiae adult females in vivo. Depletion of SRPN2 from the mosquito hemolymph increases melanin deposition on foreign surfaces such as negatively charged Sephadex beads. As reported, the knockdown of SRPN2 adversely affects the ability of the rodent malaria parasite Plasmodium berghei to invade the midgut epithelium and develop into oocysts. Importantly, we tested whether the absence of SRPN2 from the hemolymph influences Plasmodium falciparum development. RNAi silencing of SRPN2 in an An. gambiae strain originally established from local populations in Yaoundé, Cameroon, did not influence the development of autochthonous field isolates of P. falciparum. This study suggests immune evasion strategies of the human malaria parasite and emphasizes the need to study mosquito innate immune responses toward the pathogens they transmit in natural vector–parasite combinations.
Cellular and Molecular Life Sciences | 2011
Chunju An; Aidan Budd; Michael R. Kanost; Kristin Michel
Melanization is an innate immune response in arthropods that encapsulates and kills invading pathogens. One of its rate-limiting steps is the activation of prophenoloxidase (PPO), which is controlled by an extracellular proteinase cascade and serpin inhibitors. The molecular composition of this system is largely unknown in mosquitoes with the exception of serpin-2 (SRPN2), which was previously identified as a key negative regulator of melanization. Using reverse genetic and biochemical techniques, we identified the Anopheles gambiae clip-serine proteinase CLIPB9 as a PPO-activating proteinase, which is inhibited by SRPN2. Double knockdown of SRPN2 and CLIPB9 reversed the pleiotrophic phenotype induced by SRPN2 silencing. This study identifies the first inhibitory serpin-serine proteinase pair in mosquitoes and defines a regulatory unit of melanization. Additionally, the interaction of CLIPB9 and SRPN2 affects the life span of adult female mosquitoes and therefore constitutes a well-defined potential molecular target for novel late-life acting insecticides.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Sofia B. Pinto; Fabrizio Lombardo; Anastasios C. Koutsos; Robert M. Waterhouse; Krista McKay; Chunju An; Chandra Ramakrishnan; Fotis C. Kafatos; Kristin Michel
Insect hemocytes mediate important cellular immune responses including phagocytosis and encapsulation and also secrete immune factors such as opsonins, melanization factors, and antimicrobial peptides. However, the molecular composition of these important immune cells has not been elucidated in depth, because of their scarcity in the circulating hemolymph, their adhesion to multiple tissues and the lack of primary culture methods to produce sufficient material for a genome-wide analysis. In this study, we report a genome-wide molecular characterization of circulating hemocytes collected from the hemolymph of adult female Anopheles gambiae mosquitoes—the major mosquito vector of human malaria in subSaharan Africa. Their molecular profile identified 1,485 transcripts with enriched expression in these cells, and many of these genes belong to innate immune gene families. This hemocyte-specific transcriptome is compared to those of Drosophila melanogaster and two other mosquitoes, Aedes aegypti and Armigeres subalbatus. We report the identification of two genes as ubiquitous hemocyte markers and several others as hemocyte subpopulation markers. We assess, via an RNAi screen, the roles in development of Plasmodium berghei of 63 genes expressed in hemocytes and provide a molecular comparison of the transcriptome of these cells during malaria infection.
American Journal of Tropical Medicine and Hygiene | 2009
Valeliana S. Mayagaya; Kristin Michel; Mark Q. Benedict; Gerry F. Killeen; Robert A. Wirtz; Heather M. Ferguson; Floyd E. Dowell
Determining malaria vector species and age is crucial to measure malaria risk. Although different in ecology and susceptibility to control, the African malaria vectors Anopheles gambiae sensu stricto and An. arabiensis are morphologically similar and can be differentiated only by molecular techniques. Furthermore, few reliable methods exist to estimate the age of these vectors, which is a key predictor of malaria transmission intensity. We evaluated the use of near-infrared spectroscopy (NIRS) to determine vector species and age. This non-destructive technique predicted the species of field-collected mosquitoes with approximately 80% accuracy and predicted the species of laboratory-reared insects with almost 100% accuracy. The relative age of young or old females was predicted with approximately 80% accuracy, and young and old insects were predicted with > or = 90% accuracy. For applications where rapid assessment of the age structure and species composition of wild vector populations is needed, NIRS offers a valuable alternative to traditional methods.
Genome Biology | 2014
Xiaofang Jiang; Ashley Peery; A. Brantley Hall; Atashi Sharma; Xiao Guang Chen; Robert M. Waterhouse; Aleksey Komissarov; Michelle M. Riehle; Yogesh S. Shouche; Maria V. Sharakhova; Dan Lawson; Nazzy Pakpour; Peter Arensburger; Victoria L M Davidson; Karin Eiglmeier; Scott J. Emrich; Phillip George; Ryan C. Kennedy; Shrinivasrao P. Mane; Gareth Maslen; Chioma Oringanje; Yumin Qi; Robert E. Settlage; Marta Tojo; Jose M. C. Tubio; Maria F. Unger; Bo Wang; Kenneth D. Vernick; José M. C. Ribeiro; Anthony A. James
BackgroundAnopheles stephensi is the key vector of malaria throughout the Indian subcontinent and Middle East and an emerging model for molecular and genetic studies of mosquito-parasite interactions. The type form of the species is responsible for the majority of urban malaria transmission across its range.ResultsHere, we report the genome sequence and annotation of the Indian strain of the type form of An. stephensi. The 221 Mb genome assembly represents more than 92% of the entire genome and was produced using a combination of 454, Illumina, and PacBio sequencing. Physical mapping assigned 62% of the genome onto chromosomes, enabling chromosome-based analysis. Comparisons between An. stephensi and An. gambiae reveal that the rate of gene order reshuffling on the X chromosome was three times higher than that on the autosomes. An. stephensi has more heterochromatin in pericentric regions but less repetitive DNA in chromosome arms than An. gambiae. We also identify a number of Y-chromosome contigs and BACs. Interspersed repeats constitute 7.1% of the assembled genome while LTR retrotransposons alone comprise more than 49% of the Y contigs. RNA-seq analyses provide new insights into mosquito innate immunity, development, and sexual dimorphism.ConclusionsThe genome analysis described in this manuscript provides a resource and platform for fundamental and translational research into a major urban malaria vector. Chromosome-based investigations provide unique perspectives on Anopheles chromosome evolution. RNA-seq analysis and studies of immunity genes offer new insights into mosquito biology and mosquito-parasite interactions.
Journal of Insect Physiology | 2013
Melissa M. Gulley; Xin Zhang; Kristin Michel
In vector-borne diseases, the complex interplay between pathogen and its vectors immune system determines the outcome of infection and therefore disease transmission. Serpins have been shown in many animals to be key regulators of innate immune reactions. Their control over regulatory proteolytic cascades ultimately decides whether the recognition of a pathogen will lead to an appropriate immune response. In mosquitoes, serpins (SRPNs) regulate the activation of prophenoloxidase and thus melanization, contribute to malaria parasite lysis, and likely Toll pathway activation. Additionally, in culicine mosquitoes, SRPNs are able to regulate hemostasis in the vertebrate host, suggesting a crucial role during bloodfeeding. This review summarizes the annotation, transcriptional regulation, and current knowledge of SRPN function in the three mosquito species for which the complete genome sequence is available. Additionally, we give a brief overview of how SRPNs may be used to prevent transmission of vector-borne diseases.