David A. Nix
University of Utah
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David A. Nix.
Science | 2007
Philipp Kapranov; Jill Cheng; Sujit Dike; David A. Nix; Radharani Duttagupta; Aarron T. Willingham; Peter F. Stadler; Jana Hertel; Jörg Hackermüller; Ivo L. Hofacker; Ian Bell; Evelyn Cheung; Jorg Drenkow; Erica Dumais; Sandeep Patel; Gregg A. Helt; Madhavan Ganesh; Srinka Ghosh; Antonio Piccolboni; Victor Sementchenko; Hari Tammana; Thomas R. Gingeras
Significant fractions of eukaryotic genomes give rise to RNA, much of which is unannotated and has reduced protein-coding potential. The genomic origins and the associations of human nuclear and cytosolic polyadenylated RNAs longer than 200 nucleotides (nt) and whole-cell RNAs less than 200 nt were investigated in this genome-wide study. Subcellular addresses for nucleotides present in detected RNAs were assigned, and their potential processing into short RNAs was investigated. Taken together, these observations suggest a novel role for some unannotated RNAs as primary transcripts for the production of short RNAs. Three potentially functional classes of RNAs have been identified, two of which are syntenically conserved and correlate with the expression state of protein-coding genes. These data support a highly interleaved organization of the human transcriptome.
Nature | 2009
Saher Sue Hammoud; David A. Nix; Haiying Zhang; Jahnvi Purwar; Douglas T. Carrell; Bradley R. Cairns
Because nucleosomes are widely replaced by protamine in mature human sperm, the epigenetic contributions of sperm chromatin to embryo development have been considered highly limited. Here we show that the retained nucleosomes are significantly enriched at loci of developmental importance, including imprinted gene clusters, microRNA clusters, HOX gene clusters, and the promoters of stand-alone developmental transcription and signalling factors. Notably, histone modifications localize to particular developmental loci. Dimethylated lysine 4 on histone H3 (H3K4me2) is enriched at certain developmental promoters, whereas large blocks of H3K4me3 localize to a subset of developmental promoters, regions in HOX clusters, certain noncoding RNAs, and generally to paternally expressed imprinted loci, but not paternally repressed loci. Notably, trimethylated H3K27 (H3K27me3) is significantly enriched at developmental promoters that are repressed in early embryos, including many bivalent (H3K4me3/H3K27me3) promoters in embryonic stem cells. Furthermore, developmental promoters are generally DNA hypomethylated in sperm, but acquire methylation during differentiation. Taken together, epigenetic marking in sperm is extensive, and correlated with developmental regulators.
Nature Genetics | 2006
Yuri B. Schwartz; Tatyana G. Kahn; David A. Nix; Xiao-Yong Li; Richard Bourgon; Mark D. Biggin; Vincenzo Pirrotta
Polycomb group (PcG) complexes are multiprotein assemblages that bind to chromatin and establish chromatin states leading to epigenetic silencing. PcG proteins regulate homeotic genes in flies and vertebrates, but little is known about other PcG targets and the role of the PcG in development, differentiation and disease. Here, we determined the distribution of the PcG proteins PC, E(Z) and PSC and of trimethylation of histone H3 Lys27 (me3K27) in the D. melanogaster genome. At more than 200 PcG target genes, binding sites for the three PcG proteins colocalize to presumptive Polycomb response elements (PREs). In contrast, H3 me3K27 forms broad domains including the entire transcription unit and regulatory regions. PcG targets are highly enriched in genes encoding transcription factors, but they also include genes coding for receptors, signaling proteins, morphogens and regulators representing all major developmental pathways.
BMC Bioinformatics | 2008
David A. Nix; Kenneth M. Boucher
BackgroundHigh throughput signature sequencing holds many promises, one of which is the ready identification of in vivo transcription factor binding sites, histone modifications, changes in chromatin structure and patterns of DNA methylation across entire genomes. In these experiments, chromatin immunoprecipitation is used to enrich for particular DNA sequences of interest and signature sequencing is used to map the regions to the genome (ChIP-Seq). Elucidation of these sites of DNA-protein binding/modification are proving instrumental in reconstructing networks of gene regulation and chromatin remodelling that direct development, response to cellular perturbation, and neoplastic transformation.ResultsHere we present a package of algorithms and software that makes use of control input data to reduce false positives and estimate confidence in ChIP-Seq peaks. Several different methods were compared using two simulated spike-in datasets. Use of control input data and a normalized difference score were found to more than double the recovery of ChIP-Seq peaks at a 5% false discovery rate (FDR). Moreover, both a binomial p-value/q-value and an empirical FDR were found to predict the true FDR within 2–3 fold and are more reliable estimators of confidence than a global Poisson p-value. These methods were then used to reanalyze Johnson et al.s neuron-restrictive silencer factor (NRSF) ChIP-Seq data without relying on extensive qPCR validated NRSF sites and the presence of NRSF binding motifs for setting thresholds.ConclusionThe methods developed and tested here show considerable promise for reducing false positives and estimating confidence in ChIP-Seq data without any prior knowledge of the chIP target. They are part of a larger open source package freely available from http://useq.sourceforge.net/.
Cell | 2013
Magdalena Potok; David A. Nix; Timothy J Parnell; Bradley R. Cairns
Early vertebrate embryos must achieve totipotency and prepare for zygotic genome activation (ZGA). To understand this process, we determined the DNA methylation (DNAme) profiles of zebrafish gametes, embryos at different stages, and somatic muscle and compared them to gene activity and histone modifications. Sperm chromatin patterns are virtually identical to those at ZGA. Unexpectedly, the DNA of many oocyte genes important for germline functions (i.e., piwil1) or early development (i.e., hox genes) is methylated, but the loci are demethylated during zygotic cleavage stages to precisely the state observed in sperm, even in parthenogenetic embryos lacking a replicating paternal genome. Furthermore, this cohort constitutes the genes and loci that acquire DNAme during development (i.e., ZGA to muscle). Finally, DNA methyltransferase inhibition experiments suggest that DNAme silences particular gene and chromatin cohorts at ZGA, preventing their precocious expression. Thus, zebrafish achieve a totipotent chromatin state at ZGA through paternal genome competency and maternal genome DNAme reprogramming.
Human Reproduction | 2011
Saher Sue Hammoud; David A. Nix; Ahmad O. Hammoud; Mark Gibson; Bradley R. Cairns; Douglas T. Carrell
BACKGROUND The sperm chromatin of fertile men retains a small number of nucleosomes that are enriched at developmental gene promoters and imprinted gene loci. This unique chromatin packaging at certain gene promoters provides these genomic loci the ability to convey instructive epigenetic information to the zygote, potentially expanding the role and significance of the sperm epigenome in embryogenesis. We hypothesize that changes in chromatin packaging may be associated with poor reproductive outcome. METHODS Seven patients with reproductive dysfunction were recruited: three had unexplained poor embryogenesis during IVF and four were diagnosed with male infertility and previously shown to have altered protamination. Genome-wide analysis of the location of histones and histone modifications was analyzed by isolation and purification of DNA bound to histones and protamines. The histone-bound fraction of DNA was analyzed using high-throughput sequencing, both initially and following chromatin immunoprecipitation. The protamine-bound fraction was hybridized to agilent arrays. DNA methylation was examined using bisulfite sequencing. RESULTS Unlike fertile men, five of seven infertile men had non-programmatic (randomly distributed) histone retention genome-wide. Interestingly, in contrast to the total histone pool, the localization of H3 Lysine 4 methylation (H3K4me) or H3 Lysine 27 methylation (H3K27me) was highly similar in the gametes of infertile men compared with fertile men. However, there was a reduction in the amount of H3K4me or H3K27me retained at developmental transcription factors and certain imprinted genes. Finally, the methylation status of candidate developmental promoters and imprinted loci were altered in a subset of the infertile men. CONCLUSIONS This initial genome-wide analysis of epigenetic markings in the sperm of infertile men demonstrates differences in composition and epigenetic markings compared with fertile men, especially at certain imprinted and developmental loci. Although no single locus displays a complete change in chromatin packaging or DNA modification, the data suggest that moderate changes throughout the genome exist and may have a cumulative detrimental effect on fecundity.
Nature Genetics | 2008
Natalie Dutrow; David A. Nix; Derick G. Holt; Brett Milash; Brian Dalley; Erick Westbroek; Timothy J Parnell; Bradley R. Cairns
We have determined the high-resolution strand-specific transcriptome of the fission yeast S. pombe under multiple growth conditions using a novel RNA-DNA hybridization mapping (HybMap) technique. HybMap uses an antibody against an RNA-DNA hybrid to detect RNA molecules hybridized to a high-density DNA oligonucleotide tiling microarray. HybMap showed exceptional dynamic range and reproducibility, and allowed us to identify strand-specific coding, noncoding and structural RNAs, as well as previously unknown RNAs conserved in distant yeast species. Notably, we found that virtually the entire euchromatic genome (including intergenics) is transcribed, with heterochromatin dampening intergenic transcription. We identified features including large numbers of condition-specific noncoding RNAs, extensive antisense transcription, new properties of antisense transcripts and induced divergent transcription. Furthermore, our HybMap data informed the efficiency and locations of RNA splicing genome-wide. Finally, we observed strand-specific transcription islands around tRNAs at heterochromatin boundaries inside centromeres. Here, we discuss these new features in terms of organism fitness and transcriptome evolution.
Molecular and Cellular Biology | 2003
Laura M. Hoffman; David A. Nix; Beverly Benson; Ray Boot-Hanford; Erika Gustafsson; Colin Jamora; A. Sheila Menzies; Keow Lin Goh; Christopher C. Jensen; Frank B. Gertler; Elaine Fuchs; Reinhard Fässler
ABSTRACT Zyxin is an evolutionarily conserved protein that is concentrated at sites of cell adhesion, where it associates with members of the Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP) family of cytoskeletal regulators and is postulated to play a role in cytoskeletal dynamics and signaling. Zyxin transcripts are detected throughout murine embryonic development, and the protein is widely expressed in adults. Here we used a reverse genetic approach to examine the consequences of loss of zyxin function in the mouse. Mice that lack zyxin function are viable and fertile and display no obvious histological abnormalities in any of the organs examined. Because zyxin contributes to the localization of Ena/VASP family members at certain subcellular locations, we carefully examined the zyxin−/− mice for evidence of defects that have been observed when Ena/VASP proteins are compromised in the mouse. Specifically, we evaluated blood platelet function, nervous system development, and skin architecture but did not detect any defects in these systems. Zyxin is the founding member of a family of proteins that also includes the lipoma preferred partner (LPP) and thyroid receptor-interacting protein 6 (TRIP6). These zyxin family members display patterns of expression that significantly overlap that of zyxin. Western blot analysis indicates that there is no detectable upregulation of either LPP or TRIP6 expression in tissues derived from zyxin-null mice. Because zyxin family members may have overlapping functions, a comprehensive understanding of the role of these proteins in the mouse will require the generation of compound mutations in which multiple zyxin family members are simultaneously compromised.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Frédéric Biemar; David A. Nix; Jessica Piel; Brant Peterson; Matthew Ronshaugen; Victor Sementchenko; Ian Bell; J. Robert Manak; Michael S. Levine
Dorsal–ventral (DV) patterning of the Drosophila embryo is initiated by Dorsal, a sequence-specific transcription factor distributed in a broad nuclear gradient in the precellular embryo. Previous studies have identified as many as 70 protein-coding genes and one microRNA (miRNA) gene that are directly or indirectly regulated by this gradient. A gene regulation network, or circuit diagram, including the functional interconnections among 40 Dorsal target genes and 20 associated tissue-specific enhancers, has been determined for the initial stages of gastrulation. Here, we attempt to extend this analysis by identifying additional DV patterning genes using a recently developed whole-genome tiling array. This analysis led to the identification of another 30 protein-coding genes, including the Drosophila homolog of Idax, an inhibitor of Wnt signaling. In addition, remote 5′ exons were identified for at least 10 of the ≈100 protein-coding genes that were missed in earlier annotations. As many as nine intergenic uncharacterized transcription units were identified, including two that contain known microRNAs, miR-1 and -9a. We discuss the potential functions of these recently identified genes and suggest that intronic enhancers are a common feature of the DV gene network.
BMC Bioinformatics | 2010
David A. Nix; Tonya L Di Sera; Brian Dalley; Brett Milash; Robert M Cundick; Kevin S Quinn; Samir J Courdy
BackgroundWith the rapidly falling cost and availability of high throughput sequencing and microarray technologies, the bottleneck for effectively using genomic analysis in the laboratory and clinic is shifting to one of effectively managing, analyzing, and sharing genomic data.ResultsHere we present three open-source, platform independent, software tools for generating, analyzing, distributing, and visualizing genomic data. These include a next generation sequencing/microarray LIMS and analysis project center (GNomEx); an application for annotating and programmatically distributing genomic data using the community vetted DAS/2 data exchange protocol (GenoPub); and a standalone Java Swing application (GWrap) that makes cutting edge command line analysis tools available to those who prefer graphical user interfaces. Both GNomEx and GenoPub use the rich client Flex/Flash web browser interface to interact with Java classes and a relational database on a remote server. Both employ a public-private user-group security model enabling controlled distribution of patient and unpublished data alongside public resources. As such, they function as genomic data repositories that can be accessed manually or programmatically through DAS/2-enabled client applications such as the Integrated Genome Browser.ConclusionsThese tools have gained wide use in our core facilities, research laboratories and clinics and are freely available for non-profit use. See http://sourceforge.net/projects/gnomex/, http://sourceforge.net/projects/genoviz/, and http://sourceforge.net/projects/useq.