Venky N. Iyer
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Venky N. Iyer.
PLOS Genetics | 2008
Emily E. Hare; Brant K. Peterson; Venky N. Iyer; Rudolf Meier; Michael B. Eisen
The gene expression pattern specified by an animal regulatory sequence is generally viewed as arising from the particular arrangement of transcription factor binding sites it contains. However, we demonstrate here that regulatory sequences whose binding sites have been almost completely rearranged can still produce identical outputs. We sequenced the even-skipped locus from six species of scavenger flies (Sepsidae) that are highly diverged from the model species Drosophila melanogaster, but share its basic patterns of developmental gene expression. Although there is little sequence similarity between the sepsid eve enhancers and their well-characterized D. melanogaster counterparts, the sepsid and Drosophila enhancers drive nearly identical expression patterns in transgenic D. melanogaster embryos. We conclude that the molecular machinery that connects regulatory sequences to the transcription apparatus is more flexible than previously appreciated. In exploring this diverse collection of sequences to identify the shared features that account for their similar functions, we found a small number of short (20–30 bp) sequences nearly perfectly conserved among the species. These highly conserved sequences are strongly enriched for pairs of overlapping or adjacent binding sites. Together, these observations suggest that the local arrangement of binding sites relative to each other is more important than their overall arrangement into larger units of cis-regulatory function.
Genome Biology | 2004
Alan M. Moses; Derek Y. Chiang; Daniel A. Pollard; Venky N. Iyer; Michael B. Eisen
We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding-site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.
BMC Bioinformatics | 2006
Daniel A. Pollard; Alan M. Moses; Venky N. Iyer; Michael B. Eisen
BackgroundMolecular evolutionary studies of noncoding sequences rely on multiple alignments. Yet how multiple alignment accuracy varies across sequence types, tree topologies, divergences and tools, and further how this variation impacts specific inferences, remains unclear.ResultsHere we develop a molecular evolution simulation platform, CisEvolver, with models of background noncoding and transcription factor binding site evolution, and use simulated alignments to systematically examine multiple alignment accuracy and its impact on two key molecular evolutionary inferences: transcription factor binding site conservation and divergence estimation. We find that the accuracy of multiple alignments is determined almost exclusively by the pairwise divergence distance of the two most diverged species and that additional species have a negligible influence on alignment accuracy. Conserved transcription factor binding sites align better than surrounding noncoding DNA yet are often found to be misaligned at relatively short divergence distances, such that studies of binding site gain and loss could easily be confounded by alignment error. Divergence estimates from multiple alignments tend to be overestimated at short divergence distances but reach a tool specific divergence at which they cease to increase, leading to underestimation at long divergences. Our most striking finding was that overall alignment accuracy, binding site alignment accuracy and divergence estimation accuracy vary greatly across branches in a tree and are most accurate for terminal branches connecting sister taxa and least accurate for internal branches connecting sub-alignments.ConclusionOur results suggest that variation in alignment accuracy can lead to errors in molecular evolutionary inferences that could be construed as biological variation. These findings have implications for which species to choose for analyses, what kind of errors would be expected for a given set of species and how multiple alignment tools and phylogenetic inference methods might be improved to minimize or control for alignment errors.
PLOS ONE | 2009
Brant K. Peterson; Emily E. Hare; Venky N. Iyer; Steven Storage; Laura Conner; Daniel R. Papaj; Rick Kurashima; Eric B. Jang; Michael B. Eisen
The identification of regulatory sequences in animal genomes remains a significant challenge. Comparative genomic methods that use patterns of evolutionary conservation to identify non-coding sequences with regulatory function have yielded many new vertebrate enhancers. However, these methods have not contributed significantly to the identification of regulatory sequences in sequenced invertebrate taxa. We demonstrate here that this differential success, which is often attributed to fundamental differences in the nature of vertebrate and invertebrate regulatory sequences, is instead primarily a product of the relatively small size of sequenced invertebrate genomes. We sequenced and compared loci involved in early embryonic patterning from four species of true fruit flies (family Tephritidae) that have genomes four to six times larger than those of Drosophila melanogaster. Unlike in Drosophila, where virtually all non-coding DNA is highly conserved, blocks of conserved non-coding sequence in tephritids are flanked by large stretches of poorly conserved sequence, similar to what is observed in vertebrate genomes. We tested the activities of nine conserved non-coding sequences flanking the even-skipped gene of the teprhitid Ceratis capitata in transgenic D. melanogaster embryos, six of which drove patterns that recapitulate those of known D. melanogaster enhancers. In contrast, none of the three non-conserved tephritid non-coding sequences that we tested drove expression in D. melanogaster embryos. Based on the landscape of non-coding conservation in tephritids, and our initial success in using conservation in tephritids to identify D. melanogaster regulatory sequences, we suggest that comparison of tephritid genomes may provide a systematic means to annotate the non-coding portion of the D. melanogaster genome. We also propose that large genomes be given more consideration in the selection of species for comparative genomics projects, to provide increased power to detect functional non-coding DNAs and to provide a less biased view of the evolution and function of animal genomes.
PLOS Biology | 2008
Xiao-Yong Li; Stewart MacArthur; Richard Bourgon; David A. Nix; Daniel A. Pollard; Venky N. Iyer; Aaron Hechmer; Lisa Simirenko; Mark Stapleton; Cris L. Luengo Hendriks; Hou Cheng Chu; Nobuo Ogawa; William Inwood; Victor Sementchenko; Amy Beaton; Richard Weiszmann; Susan E. Celniker; David W. Knowles; Thomas R. Gingeras; Terence P. Speed; Michael B. Eisen; Mark D. Biggin
PLOS Genetics | 2005
Daniel A. Pollard; Venky N. Iyer; Alan M. Moses; Michael B. Eisen
Lawrence Berkeley National Laboratory | 2008
Xiao-Yong Li; Stewart MacArthur; Richard Bourgon; David A. Nix; Daniel A. Pollard; Venky N. Iyer; Aaron Hechmer; Lisa Simirenko; Mark Stapleton; Cris L. Luengo Hendriks; Hou Cheng Chu; Nobuo Ogawa; William Inwood; Victor Sementchenko; Amy Beaton; Richard Weiszmann; Susan E. Celniker; David W. Knowles; Thomas R. Gingeras; Terence P. Speed; Michael B. Eisen; Mark D. Biggin
Archive | 2006
Alan M. Moses; Daniel A. Pollard; David A. Nix; Venky N. Iyer; Xiao-Yong Li; Mark D. Biggin; Michael B. Eisen
Lawrence Berkeley National Laboratory | 2006
Daniel A. Pollard; Venky N. Iyer; Alan M. Moses; Michael B. Eisen
Lawrence Berkeley National Laboratory | 2006
Alan M. Moses; Daniel A. Pollard; David A. Nix; Venky N. Iyer; Xiao-Yong Li; Mark D. Biggin; Michael B. Eisen