David Alvarez-Ponce
University of Nevada, Reno
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Alvarez-Ponce.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Ewen F. Kirkness; Brian J. Haas; Weilin Sun; Henk R. Braig; M. Alejandra Perotti; John M. Clark; Si Hyeock Lee; Hugh M. Robertson; Ryan C. Kennedy; Eran Elhaik; Daniel Gerlach; Evgenia V. Kriventseva; Christine G. Elsik; Dan Graur; Catherine A. Hill; Jan A. Veenstra; Brian Walenz; Jose M. C. Tubio; José M. C. Ribeiro; Julio Rozas; J. Spencer Johnston; Justin T. Reese; Aleksandar Popadić; Marta Tojo; Didier Raoult; David L. Reed; Yoshinori Tomoyasu; Emily Kraus; Omprakash Mittapalli; Venu M. Margam
As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.
Genome Research | 2008
David Alvarez-Ponce; Montserrat Aguadé; Julio Rozas
Biological function is based on complex networks consisting of large numbers of interacting molecules. The evolutionary properties of molecular networks and, in particular, the impact of network architecture on the sequence evolution of its individual components are, nonetheless, still poorly understood. Here, we conducted a fine-scale network-level molecular evolutionary analysis of the insulin/TOR pathway across 12 species of Drosophila. We found that the insulin/TOR pathway components are completely conserved across these species and that two genes located at major network branch points show evidence for positive selection. Remarkably, we detected a gradient in the strength of purifying selection along the pathway, increasing from the upstream to the downstream genes. We also found that physically interacting proteins tend to have more similar levels of selective constraint, even though this feature might represent a byproduct of the correlation between selective constraint and the pathway position. Our results clearly indicate that the levels of functional constraint do depend on the position of the proteins in the pathway and, consequently, the architecture of the pathway constrains gene sequence evolution.
Genome Biology and Evolution | 2011
David Alvarez-Ponce; Montserrat Aguadé; Julio Rozas
Complexity of biological function relies on large networks of interacting molecules. However, the evolutionary properties of these networks are not fully understood. It has been shown that selective pressures depend on the position of genes in the network. We have previously shown that in the Drosophila insulin/target of rapamycin (TOR) signal transduction pathway there is a correlation between the pathway position and the strength of purifying selection, with the downstream genes being most constrained. In this study, we investigated the evolutionary dynamics of this well-characterized pathway in vertebrates. More specifically, we determined the impact of natural selection on the evolution of 72 genes of this pathway. We found that in vertebrates there is a similar gradient of selective constraint in the insulin/TOR pathway to that found in Drosophila. This feature is neither the result of a polarity in the impact of positive selection nor of a series of factors affecting selective constraint levels (gene expression level and breadth, codon bias, protein length, and connectivity). We also found that pathway genes encoding physically interacting proteins tend to evolve under similar selective constraints. The results indicate that the architecture of the vertebrate insulin/TOR pathway constrains the molecular evolution of its components. Therefore, the polarity detected in Drosophila is neither specific nor incidental of this genus. Hence, although the underlying biological mechanisms remain unclear, these may be similar in both vertebrates and Drosophila.
Molecular Biology and Evolution | 2012
Pierre Luisi; David Alvarez-Ponce; Giovanni Marco Dall’Olio; Martin Sikora; Jaume Bertranpetit; Hafid Laayouni
Genes and proteins rarely act in isolation, but they rather operate as components of complex networks of interacting molecules. Therefore, for understanding their evolution, it may be helpful to take into account the interaction networks in which they participate. It has been shown that selective constraints acting on genes depend on the position that they occupy in the network. Less understood is how the impact of local adaptation at the intraspecific level is affected by the network structure. Here, we analyzed the patterns of molecular evolution of 67 genes involved in the insulin/target of rapamycin (TOR) signal transduction pathway. This well-characterized pathway plays a key role in fundamental processes such as energetic metabolism, growth, reproduction, and aging and is involved in metabolic disorders such as obesity, insulin resistance, and diabetes. For that purpose, we combined genotype data from worldwide human populations with current knowledge of the structure and function of the pathway. We identified the footprint of recent positive selection in nine of the studied genomic regions. Most of the adaptation signals were observed among Middle East and North African, European, and Central South Asian populations. We found that positive selection preferentially targets the most central elements in the pathway, in contrast to previous observations in the whole human interactome. This observation indicates that the impact of positive selection on genes involved in the insulin/TOR pathway is affected by the pathway structure.
Molecular Biology and Evolution | 2012
David Alvarez-Ponce; Sara Guirao-Rico; Dorcas J. Orengo; Carmen Segarra; Julio Rozas; Montserrat Aguadé
The IT-insulin/target of rapamycin (TOR)-signal transduction pathway is a relatively well-characterized pathway that plays a central role in fundamental biological processes. Network-level analyses of DNA divergence in Drosophila and vertebrates have revealed a clear gradient in the levels of purifying selection along this pathway, with the downstream genes being the most constrained. Remarkably, this feature does not result from factors known to affect selective constraint such as gene expression, codon bias, protein length, and connectivity. The present work aims to establish whether the selective constraint gradient detected along the IT pathway at the between-species level can also be observed at a shorter time scale. With this purpose, we have surveyed DNA polymorphism in Drosophila melanogaster and divergence from D. simulans along the IT pathway. Our network-level analysis shows that DNA polymorphism exhibits the same polarity in the strength of purifying selection as previously detected at the divergence level. This equivalent feature detected both within species and between closely and distantly related species points to the action of a general mechanism, whose action is neither organism specific nor evolutionary time dependent. The detected polarity would be, therefore, intrinsic to the IT pathway architecture and function.
Genome Biology and Evolution | 2015
Pierre Luisi; David Alvarez-Ponce; Marc Pybus; Mario A. Fares; Jaume Bertranpetit; Hafid Laayouni
Genes vary in their likelihood to undergo adaptive evolution. The genomic factors that determine adaptability, however, remain poorly understood. Genes function in the context of molecular networks, with some occupying more important positions than others and thus being likely to be under stronger selective pressures. However, how positive selection distributes across the different parts of molecular networks is still not fully understood. Here, we inferred positive selection using comparative genomics and population genetics approaches through the comparison of 10 mammalian and 270 human genomes, respectively. In agreement with previous results, we found that genes with lower network centralities are more likely to evolve under positive selection (as inferred from divergence data). Surprisingly, polymorphism data yield results in the opposite direction than divergence data: Genes with higher centralities are more likely to have been targeted by recent positive selection during recent human evolution. Our results indicate that the relationship between centrality and the impact of adaptive evolution highly depends on the mode of positive selection and/or the evolutionary time-scale.
Genome Biology and Evolution | 2016
José Aguilar-Rodríguez; Beatriz Sabater-Muñoz; Roser Montagud-Martínez; Víctor Berlanga; David Alvarez-Ponce; Andreas Wagner; Mario A. Fares
Abstract Molecular chaperones, also known as heat-shock proteins, refold misfolded proteins and help other proteins reach their native conformation. Thanks to these abilities, some chaperones, such as the Hsp90 protein or the chaperonin GroEL, can buffer the deleterious phenotypic effects of mutations that alter protein structure and function. Hsp70 chaperones use a chaperoning mechanism different from that of Hsp90 and GroEL, and it is not known whether they can also buffer mutations. Here, we show that they can. To this end, we performed a mutation accumulation experiment in Escherichia coli, followed by whole-genome resequencing. Overexpression of the Hsp70 chaperone DnaK helps cells cope with mutational load and completely avoid the extinctions we observe in lineages evolving without chaperone overproduction. Additionally, our sequence data show that DnaK overexpression increases mutational robustness, the tolerance of its clients to nonsynonymous nucleotide substitutions. We also show that this elevated mutational buffering translates into differences in evolutionary rates on intermediate and long evolutionary time scales. Specifically, we studied the evolutionary rates of DnaK clients using the genomes of E. coli, Salmonella enterica, and 83 other gamma-proteobacteria. We find that clients that interact strongly with DnaK evolve faster than weakly interacting clients. Our results imply that all three major chaperone classes can buffer mutations and affect protein evolution. They illustrate how an individual protein like a chaperone can have a disproportionate effect on the evolution of a proteome.
Nature Ecology and Evolution | 2017
Kenji Fukushima; Xiaodong Fang; David Alvarez-Ponce; Huimin Cai; Lorenzo Carretero-Paulet; Cui Chen; Tien-Hao Chang; Kimberly M. Farr; Tomomichi Fujita; Yuji Hiwatashi; Yoshikazu Hoshi; Takamasa Imai; Masahiro Kasahara; Pablo Librado; Likai Mao; Hitoshi Mori; Tomoaki Nishiyama; Masafumi Nozawa; Gergő Pálfalvi; Stephen T. Pollard; Julio Rozas; Alejandro Sánchez-Gracia; David Sankoff; Tomoko F. Shibata; Shuji Shigenobu; Naomi Sumikawa; Taketoshi Uzawa; Meiying Xie; Chunfang Zheng; David D. Pollock
Carnivorous plants exploit animals as a nutritional source and have inspired long-standing questions about the origin and evolution of carnivory-related traits. To investigate the molecular bases of carnivory, we sequenced the genome of the heterophyllous pitcher plant Cephalotus follicularis, in which we succeeded in regulating the developmental switch between carnivorous and non-carnivorous leaves. Transcriptome comparison of the two leaf types and gene repertoire analysis identified genetic changes associated with prey attraction, capture, digestion and nutrient absorption. Analysis of digestive fluid proteins from C. follicularis and three other carnivorous plants with independent carnivorous origins revealed repeated co-options of stress-responsive protein lineages coupled with convergent amino acid substitutions to acquire digestive physiology. These results imply constraints on the available routes to evolve plant carnivory.
The ISME Journal | 2017
Beatriz Sabater-Muñoz; Christina Toft; David Alvarez-Ponce; Mario A. Fares
An open question in evolutionary biology is how does the selection–drift balance determine the fates of biological interactions. We searched for signatures of selection and drift in genomes of five endosymbiotic bacterial groups known to evolve under strong genetic drift. Although most genes in endosymbiotic bacteria showed evidence of relaxed purifying selection, many genes in these bacteria exhibited stronger selective constraints than their orthologs in free-living bacterial relatives. Remarkably, most of these highly constrained genes had no role in the host–symbiont interactions but were involved in either buffering the deleterious consequences of drift or other host-unrelated functions, suggesting that they have either acquired new roles or their role became more central in endosymbiotic bacteria. Experimental evolution of Escherichia coli under strong genetic drift revealed remarkable similarities in the mutational spectrum, genome reduction patterns and gene losses to endosymbiotic bacteria of insects. Interestingly, the transcriptome of the experimentally evolved lines showed a generalized deregulation of the genome that affected genes encoding proteins involved in mutational buffering, regulation and amino acid biosynthesis, patterns identical to those found in endosymbiotic bacteria. Our results indicate that drift has shaped endosymbiotic associations through a change in the functional landscape of bacterial genes and that the host had only a small role in such a shift.
Genome Biology and Evolution | 2016
David Alvarez-Ponce; Beatriz Sabater-Muñoz; Christina Toft; Mario X. Ruiz-González; Mario A. Fares
Abstract The Neutral Theory of Molecular Evolution is considered the most powerful theory to understand the evolutionary behavior of proteins. One of the main predictions of this theory is that essential proteins should evolve slower than dispensable ones owing to increased selective constraints. Comparison of genomes of different species, however, has revealed only small differences between the rates of evolution of essential and nonessential proteins. In some analyses, these differences vanish once confounding factors are controlled for, whereas in other cases essentiality seems to have an independent, albeit small, effect. It has been argued that comparing relatively distant genomes may entail a number of limitations. For instance, many of the genes that are dispensable in controlled lab conditions may be essential in some of the conditions faced in nature. Moreover, essentiality can change during evolution, and rates of protein evolution are simultaneously shaped by a variety of factors, whose individual effects are difficult to isolate. Here, we conducted two parallel mutation accumulation experiments in Escherichia coli, during 5,500–5,750 generations, and compared the genomes at different points of the experiments. Our approach (a short-term experiment, under highly controlled conditions) enabled us to overcome many of the limitations of previous studies. We observed that essential proteins evolved substantially slower than nonessential ones during our experiments. Strikingly, rates of protein evolution were only moderately affected by expression level and protein length.