Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Arnlund is active.

Publication


Featured researches published by David Arnlund.


Science | 2012

High-resolution protein structure determination by serial femtosecond crystallography

Sébastien Boutet; Lukas Lomb; Garth J. Williams; Thomas R. M. Barends; Andrew Aquila; R. Bruce Doak; Uwe Weierstall; Daniel P. DePonte; Jan Steinbrener; Robert L. Shoeman; Marc Messerschmidt; Anton Barty; Thomas A. White; Stephan Kassemeyer; Richard A. Kirian; M. Marvin Seibert; Paul A. Montanez; Chris Kenney; R. Herbst; P. Hart; J. Pines; G. Haller; Sol M. Gruner; Hugh T. Philipp; Mark W. Tate; Marianne Hromalik; Lucas J. Koerner; Niels van Bakel; John Morse; Wilfred Ghonsalves

Size Matters Less X-ray crystallography is a central research tool for uncovering the structures of proteins and other macromolecules. However, its applicability typically requires growth of large crystals, in part because a sufficient number of molecules must be present in the lattice for the sample to withstand x-ray—induced damage. Boutet et al. (p. 362, published online 31 May) now demonstrate that the intense x-ray pulses emitted by a free-electron laser source can yield data in few enough exposures to uncover the high-resolution structure of microcrystals. A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required. Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.


Science | 2013

Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser

Karol Nass; Daniel P. DePonte; Thomas A. White; Dirk Rehders; Anton Barty; Francesco Stellato; Mengning Liang; Thomas R. M. Barends; Sébastien Boutet; Garth J. Williams; Marc Messerschmidt; M. Marvin Seibert; Andrew Aquila; David Arnlund; Sasa Bajt; Torsten Barth; Michael J. Bogan; Carl Caleman; Tzu Chiao Chao; R. Bruce Doak; Holger Fleckenstein; Matthias Frank; Raimund Fromme; Lorenzo Galli; Ingo Grotjohann; Mark S. Hunter; Linda C. Johansson; Stephan Kassemeyer; Gergely Katona; Richard A. Kirian

Diffraction Before Destruction A bottleneck in x-ray crystallography is the growth of well-ordered crystals large enough to obtain high-resolution diffraction data within an exposure that limits radiation damage. Serial femtosecond crystallography promises to overcome these constraints by using short intense pulses that out-run radiation damage. A stream of crystals is flowed across the free-electron beam and for each pulse, diffraction data is recorded from a single crystal before it is destroyed. Redecke et al. (p. 227, published online 29 November; see the Perspective by Helliwell) used this technique to determine the structure of an enzyme from Trypanosoma brucei, the parasite that causes sleeping sickness, from micron-sized crystals grown within insect cells. The structure shows how this enzyme, which is involved in degradation of host proteins, is natively inhibited prior to activation, which could help in the development of parasite-specific inhibitors. In vivo crystallization and serial femtosecond crystallography reveal the structure of a sleeping sickness parasite protease. [Also see Perspective by Helliwell] The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the “diffraction-before-destruction” approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals.


Optics Express | 2012

Time-resolved protein nanocrystallography using an X-ray free-electron laser

Andrew Aquila; Mark S. Hunter; R. Bruce Doak; Richard A. Kirian; Petra Fromme; Thomas A. White; Jakob Andreasson; David Arnlund; Sasa Bajt; Thomas R. M. Barends; Miriam Barthelmess; Michael J. Bogan; Christoph Bostedt; Hervé Bottin; John D. Bozek; Carl Caleman; Nicola Coppola; Jan Davidsson; Daniel P. DePonte; Veit Elser; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Matthias Frank; Raimund Fromme; Heinz Graafsma; Ingo Grotjohann; Lars Gumprecht; Janos Hajdu

We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.


Nature Methods | 2012

Lipidic phase membrane protein serial femtosecond crystallography.

Linda C. Johansson; David Arnlund; Thomas A. White; Gergely Katona; Daniel P. DePonte; Uwe Weierstall; R. Bruce Doak; Robert L. Shoeman; Lukas Lomb; Erik Malmerberg; Jan Davidsson; Karol Nass; Mengning Liang; Jakob Andreasson; Andrew Aquila; Sasa Bajt; Miriam Barthelmess; Anton Barty; Michael J. Bogan; Christoph Bostedt; John D. Bozek; Carl Caleman; Ryan Coffee; Nicola Coppola; Tomas Ekeberg; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Heinz Graafsma

X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.


Nature Communications | 2013

Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography

Linda C. Johansson; David Arnlund; Gergely Katona; Thomas A. White; Anton Barty; Daniel P. DePonte; Robert L. Shoeman; Cecilia Wickstrand; Amit Sharma; Garth J. Williams; Andrew Aquila; Michael J. Bogan; Carl Caleman; Jan Davidsson; R. Bruce Doak; Matthias Frank; Raimund Fromme; Lorenzo Galli; Ingo Grotjohann; Mark S. Hunter; Stephan Kassemeyer; Richard A. Kirian; Christopher Kupitz; Mengning Liang; Lukas Lomb; Erik Malmerberg; Andrew V. Martin; M. Messerschmidt; K. Nass; M. Marvin Seibert

Serial femtosecond crystallography is an X-ray free-electron-laser-based method with considerable potential to have an impact on challenging problems in structural biology. Here we present X-ray diffraction data recorded from microcrystals of the Blastochloris viridis photosynthetic reaction centre to 2.8 Å resolution and determine its serial femtosecond crystallography structure to 3.5 Å resolution. Although every microcrystal is exposed to a dose of 33 MGy, no signs of X-ray-induced radiation damage are visible in this integral membrane protein structure.


Nature Methods | 2010

Rapid readout detector captures protein time-resolved WAXS

Sebastian Westenhoff; Erik Malmerberg; David Arnlund; Linda C. Johansson; Elena Nazarenko; Marco Cammarata; Jan Davidsson; Vincent Chaptal; Jeff Abramson; Gergely Katona; Andreas Menzel; Richard Neutze

To the Editor: Time-resolved wide-angle X-ray scattering (WAXS) is emerging as a powerful approach for visualizing global conformational changes in proteins in real time. WAXS-based studies to date include following the light-triggered reactions of hemoglobin1 and myoglobin2,3 in complex with carbon monoxide, and structural characterization of the photocycles of bacteriorhodopsin and proteorhodopsin4. Compared to time-resolved Laue diffraction and trapped intermediate studies5, time-resolved WAXS is a solution-based method and therefore permits visualization Color blindness


Science Signaling | 2015

Conformational activation of visual rhodopsin in native disc membranes

Erik Malmerberg; Petra H. M. Bovee-Geurts; Gergely Katona; Xavier Deupi; David Arnlund; Cecilia Wickstrand; Linda C. Johansson; Sebastian Westenhoff; Elena Nazarenko; Gebhard F. X. Schertler; Andreas Menzel; Willem J. de Grip; Richard Neutze

Structural analysis with TR-WAXS reveals a light-activated conformational change in rhodopsin in native membranes. Lighting up rhodopsin movement One of the fastest signaling events is the eye’s response to light, which is detected by rhodopsin, a member of the seven-transmembrane G protein [heterotrimeric guanine nucleotide–binding protein]–coupled receptors (GPCRs). Although many structural analyses have been done with this and other GPCRs, few have been performed with the proteins in their native membrane environment. Malmerberg et al. used time-resolved wide-angle x-ray scattering to identify light-induced conformational changes in rhodopsin in its native membrane at room temperature. Within a few milliseconds, rhodopsin adopted a stable active conformation that was associated with a large movement of portions of two adjacent transmembrane domains. Rhodopsin is the G protein–coupled receptor (GPCR) that serves as a dim-light receptor for vision in vertebrates. We probed light-induced conformational changes in rhodopsin in its native membrane environment at room temperature using time-resolved wide-angle x-ray scattering. We observed a rapid conformational transition that is consistent with an outward tilt of the cytoplasmic portion of transmembrane helix 6 concomitant with an inward movement of the cytoplasmic portion of transmembrane helix 5. These movements were considerably larger than those reported from the basis of crystal structures of activated rhodopsin, implying that light activation of rhodopsin involves a more extended conformational change than was previously suggested.


Structure | 2017

From Macrocrystals to Microcrystals: A Strategy for Membrane Protein Serial Crystallography

Robert Dods; Petra Båth; David Arnlund; Kenneth R. Beyerlein; Garrett Nelson; Mengling Liang; Peter Berntsen; Erik Malmerberg; Linda Johansson; Rebecka Andersson; Robert Bosman; Sergio Carbajo; Elin Claesson; Chelsie E. Conrad; Peter Dahl; Greger Hammarin; Mark S. Hunter; Chufeng Li; Stella Lisova; Despina Milathianaki; Cecilia Safari; Amit Sharma; Garth J. Williams; Cecilia Wickstrand; Oleksandr Yefanov; Jan Davidsson; Daniel P. DePonte; Anton Barty; Gisela Brändén; Richard Neutze

Serial protein crystallography was developed at X-ray free-electron lasers (XFELs) and is now also being applied at storage ring facilities. Robust strategies for the growth and optimization of microcrystals are needed to advance the field. Here we illustrate a generic strategy for recovering high-density homogeneous samples of microcrystals starting from conditions known to yield large (macro) crystals of the photosynthetic reaction center of Blastochloris viridis (RCvir). We first crushed these crystals prior to multiple rounds of microseeding. Each cycle of microseeding facilitated improvements in the RCvir serial femtosecond crystallography (SFX) structure from 3.3-Å to 2.4-Å resolution. This approach may allow known crystallization conditions for other proteins to be adapted to exploit novel scientific opportunities created by serial crystallography.


Cytoskeleton | 2017

Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser.

David Popp; N. Duane Loh; Habiba Zorgati; Umesh Ghoshdastider; Lu Ting Liow; Magdalena I. Ivanova; Mårten Larsson; Daniel P. DePonte; Richard Bean; Kenneth R. Beyerlein; Cornelius Gati; Dominik Oberthuer; David Arnlund; Gisela Brändén; Peter Berntsen; Duilio Cascio; Leonard M. G. Chavas; Joe P. J. Chen; Ke Ding; Holger Fleckenstein; Lars Gumprecht; Estelle Mossou; Michael R. Sawaya; Aaron S. Brewster; Johan Hattne; Nicholas K. Sauter; M. Marvin Seibert; Carolin Seuring; Francesco Stellato; Thomas Tilp

A major goal for X‐ray free‐electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one‐dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F‐actin, and amyloid fibrils), which when intersected by femtosecond X‐ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F‐actin can be flow‐aligned to a disorientation of approximately 5 degrees. Using this XFEL‐based technique, we determine that gelsolin amyloids are comprised of stacked β‐strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α‐synuclein amyloids.


Nature Photonics | 2012

Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements

Anton Barty; Carl Caleman; Andrew Aquila; Nicusor Timneanu; Lukas Lomb; Thomas A. White; Jakob Andreasson; David Arnlund; Sasa Bajt; Thomas R. M. Barends; Miriam Barthelmess; Michael J. Bogan; Christoph Bostedt; John D. Bozek; Ryan Coffee; Nicola Coppola; Jan Davidsson; Daniel P. DePonte; R. Bruce Doak; Tomas Ekeberg; Veit Elser; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Petra Fromme; Heinz Graafsma; Lars Gumprecht; Janos Hajdu; Christina Y. Hampton

Collaboration


Dive into the David Arnlund's collaboration.

Top Co-Authors

Avatar

Daniel P. DePonte

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Aquila

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Anton Barty

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gergely Katona

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge