Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gergely Katona is active.

Publication


Featured researches published by Gergely Katona.


Science | 2012

High-resolution protein structure determination by serial femtosecond crystallography

Sébastien Boutet; Lukas Lomb; Garth J. Williams; Thomas R. M. Barends; Andrew Aquila; R. Bruce Doak; Uwe Weierstall; Daniel P. DePonte; Jan Steinbrener; Robert L. Shoeman; Marc Messerschmidt; Anton Barty; Thomas A. White; Stephan Kassemeyer; Richard A. Kirian; M. Marvin Seibert; Paul A. Montanez; Chris Kenney; R. Herbst; P. Hart; J. Pines; G. Haller; Sol M. Gruner; Hugh T. Philipp; Mark W. Tate; Marianne Hromalik; Lucas J. Koerner; Niels van Bakel; John Morse; Wilfred Ghonsalves

Size Matters Less X-ray crystallography is a central research tool for uncovering the structures of proteins and other macromolecules. However, its applicability typically requires growth of large crystals, in part because a sufficient number of molecules must be present in the lattice for the sample to withstand x-ray—induced damage. Boutet et al. (p. 362, published online 31 May) now demonstrate that the intense x-ray pulses emitted by a free-electron laser source can yield data in few enough exposures to uncover the high-resolution structure of microcrystals. A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required. Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.


Science | 2013

Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser

Karol Nass; Daniel P. DePonte; Thomas A. White; Dirk Rehders; Anton Barty; Francesco Stellato; Mengning Liang; Thomas R. M. Barends; Sébastien Boutet; Garth J. Williams; Marc Messerschmidt; M. Marvin Seibert; Andrew Aquila; David Arnlund; Sasa Bajt; Torsten Barth; Michael J. Bogan; Carl Caleman; Tzu Chiao Chao; R. Bruce Doak; Holger Fleckenstein; Matthias Frank; Raimund Fromme; Lorenzo Galli; Ingo Grotjohann; Mark S. Hunter; Linda C. Johansson; Stephan Kassemeyer; Gergely Katona; Richard A. Kirian

Diffraction Before Destruction A bottleneck in x-ray crystallography is the growth of well-ordered crystals large enough to obtain high-resolution diffraction data within an exposure that limits radiation damage. Serial femtosecond crystallography promises to overcome these constraints by using short intense pulses that out-run radiation damage. A stream of crystals is flowed across the free-electron beam and for each pulse, diffraction data is recorded from a single crystal before it is destroyed. Redecke et al. (p. 227, published online 29 November; see the Perspective by Helliwell) used this technique to determine the structure of an enzyme from Trypanosoma brucei, the parasite that causes sleeping sickness, from micron-sized crystals grown within insect cells. The structure shows how this enzyme, which is involved in degradation of host proteins, is natively inhibited prior to activation, which could help in the development of parasite-specific inhibitors. In vivo crystallization and serial femtosecond crystallography reveal the structure of a sleeping sickness parasite protease. [Also see Perspective by Helliwell] The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the “diffraction-before-destruction” approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals.


Nature Methods | 2012

Lipidic phase membrane protein serial femtosecond crystallography.

Linda C. Johansson; David Arnlund; Thomas A. White; Gergely Katona; Daniel P. DePonte; Uwe Weierstall; R. Bruce Doak; Robert L. Shoeman; Lukas Lomb; Erik Malmerberg; Jan Davidsson; Karol Nass; Mengning Liang; Jakob Andreasson; Andrew Aquila; Sasa Bajt; Miriam Barthelmess; Anton Barty; Michael J. Bogan; Christoph Bostedt; John D. Bozek; Carl Caleman; Ryan Coffee; Nicola Coppola; Tomas Ekeberg; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Heinz Graafsma

X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.


Structure | 2009

Structural Dynamics of Light-Driven Proton Pumps

Magnus Andersson; Erik Malmerberg; Sebastian Westenhoff; Gergely Katona; Marco Cammarata; Annemarie B. Wöhri; Linda C. Johansson; Friederike Ewald; Mattias Eklund; Michael Wulff; Jan Davidsson; Richard Neutze

Bacteriorhodopsin and proteorhodopsin are simple heptahelical proton pumps containing a retinal chromophore covalently bound to helix G via a protonated Schiff base. Following the absorption of a photon, all-trans retinal is isomerized to a 13-cis conformation, initiating a sequence of conformational changes driving vectorial proton transport. In this study we apply time-resolved wide-angle X-ray scattering to visualize in real time the helical motions associated with proton pumping by bacteriorhodopsin and proteorhodopsin. Our results establish that three conformational states are required to describe their photocycles. Significant motions of the cytoplasmic half of helix F and the extracellular half of helix C are observed prior to the primary proton transfer event, which increase in amplitude following proton transfer. These results both simplify the structural description to emerge from intermediate trapping studies of bacteriorhodopsin and reveal shared dynamical principles for proton pumping.


Science | 2010

Light-Induced Structural Changes in a Photosynthetic Reaction Center Caught by Laue Diffraction

Annemarie B. Wöhri; Gergely Katona; Linda C. Johansson; Emelie Fritz; Erik Malmerberg; Magnus Andersson; Jonathan Vincent; Mattias Eklund; Marco Cammarata; Michael Wulff; Jan Davidsson; Gerrit Groenhof; Richard Neutze

Light Structures Absorption of light by photosynthetic reaction centers causes structural changes and triggers a series of electron transfer reactions, resulting in a transmembrane potential difference that can be used to drive the subsequent chemistry. The initial electron transfer generates a charge-separated state that must be stabilized to prevent dissipation of energy through recombination. Wöhri et al. (p. 630) have used time-resolved Laue diffraction crystallography to observe light-induced conformational changes that occur within milliseconds of photooxidation of the dimer of bacteriochlorophyll molecules, known as the “special pair,” in the photosynthetic reaction center of Blastochloris viridis. Stabilization appears to occur because of the deprotonation of a conserved tyrosine residue that moves closer to the special pair. Fleeting molecular events are observed as light illuminates chlorophyll to initiate photosynthesis. Photosynthetic reaction centers convert the energy content of light into a transmembrane potential difference and so provide the major pathway for energy input into the biosphere. We applied time-resolved Laue diffraction to study light-induced conformational changes in the photosynthetic reaction center complex of Blastochloris viridis. The side chain of TyrL162, which lies adjacent to the special pair of bacteriochlorophyll molecules that are photooxidized in the primary light conversion event of photosynthesis, was observed to move 1.3 angstroms closer to the special pair after photoactivation. Free energy calculations suggest that this movement results from the deprotonation of this conserved tyrosine residue and provides a mechanism for stabilizing the primary charge separation reactions of photosynthesis.


Nature Communications | 2013

Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography

Linda C. Johansson; David Arnlund; Gergely Katona; Thomas A. White; Anton Barty; Daniel P. DePonte; Robert L. Shoeman; Cecilia Wickstrand; Amit Sharma; Garth J. Williams; Andrew Aquila; Michael J. Bogan; Carl Caleman; Jan Davidsson; R. Bruce Doak; Matthias Frank; Raimund Fromme; Lorenzo Galli; Ingo Grotjohann; Mark S. Hunter; Stephan Kassemeyer; Richard A. Kirian; Christopher Kupitz; Mengning Liang; Lukas Lomb; Erik Malmerberg; Andrew V. Martin; M. Messerschmidt; K. Nass; M. Marvin Seibert

Serial femtosecond crystallography is an X-ray free-electron-laser-based method with considerable potential to have an impact on challenging problems in structural biology. Here we present X-ray diffraction data recorded from microcrystals of the Blastochloris viridis photosynthetic reaction centre to 2.8 Å resolution and determine its serial femtosecond crystallography structure to 3.5 Å resolution. Although every microcrystal is exposed to a dose of 33 MGy, no signs of X-ray-induced radiation damage are visible in this integral membrane protein structure.


Structure | 2008

A Lipidic-Sponge Phase Screen for Membrane Protein Crystallization

Annemarie B. Wöhri; Linda C. Johansson; Pia Wadsten-Hindrichsen; Weixiao Y. Wahlgren; Gerhard Fischer; Rob Horsefield; Gergely Katona; Maria Nyblom; Fredrik Öberg; Gillian Young; Richard J. Cogdell; Niall J. Fraser; Sven Engström; Richard Neutze

A major current deficit in structural biology is the lack of high-resolution structures of eukaryotic membrane proteins, many of which are key drug targets for the treatment of disease. Numerous eukaryotic membrane proteins require specific lipids for their stability and activity, and efforts to crystallize and solve the structures of membrane proteins that do not address the issue of lipids frequently end in failure rather than success. To help address this problem, we have developed a sparse matrix crystallization screen consisting of 48 lipidic-sponge phase conditions. Sponge phases form liquid lipid bilayer environments which are suitable for conventional hanging- and sitting-drop crystallization experiments. Using the sponge phase screen, we obtained crystals of several different membrane proteins from bacterial and eukaryotic sources. We also demonstrate how the screen may be manipulated by incorporating specific lipids such as cholesterol; this modification led to crystals being recovered from a bacterial photosynthetic core complex.


Acta Crystallographica Section A | 2010

Time-resolved structural studies of protein reaction dynamics : a smorgasbord of X-ray approaches

Sebastian Westenhoff; Elena Nazarenko; Erik Malmerberg; Jan Davidsson; Gergely Katona; Richard Neutze

Time-resolved structural studies of proteins have undergone several significant developments during the last decade. Recent developments using time-resolved X-ray methods, such as time-resolved Laue diffraction, low-temperature intermediate trapping, time-resolved wide-angle X-ray scattering and time-resolved X-ray absorption spectroscopy, are reviewed.


PLOS ONE | 2011

Directed Evolution Reveals the Binding Motif Preference of the Lc8/Dynll Hub Protein and Predicts Large Numbers of Novel Binders in the Human Proteome

Péter Rapali; László Radnai; Dániel Süveges; Veronika Harmat; Ferenc Tölgyesi; Weixiao Y. Wahlgren; Gergely Katona; László Nyitray; Gábor Pál

LC8 dynein light chain (DYNLL) is a eukaryotic hub protein that is thought to function as a dimerization engine. Its interacting partners are involved in a wide range of cellular functions. In its dozens of hitherto identified binding partners DYNLL binds to a linear peptide segment. The known segments define a loosely characterized binding motif: [D/S]-4K-3X-2[T/V/I]-1Q0[T/V]1[D/E]2. The motifs are localized in disordered segments of the DYNLL-binding proteins and are often flanked by coiled coil or other potential dimerization domains. Based on a directed evolution approach, here we provide the first quantitative characterization of the binding preference of the DYNLL binding site. We displayed on M13 phage a naïve peptide library with seven fully randomized positions around a fixed, naturally conserved glutamine. The peptides were presented in a bivalent manner fused to a leucine zipper mimicking the natural dimer to dimer binding stoichiometry of DYNLL-partner complexes. The phage-selected consensus sequence V-5S-4R-3G-2T-1Q0T1E2 resembles the natural one, but is extended by an additional N-terminal valine, which increases the affinity of the monomeric peptide twentyfold. Leu-zipper dimerization increases the affinity into the subnanomolar range. By comparing crystal structures of an SRGTQTE-DYNLL and a dimeric VSRGTQTE-DYNLL complex we find that the affinity enhancing valine is accommodated in a binding pocket on DYNLL. Based on the in vitro evolved sequence pattern we predict a large number of novel DYNLL binding partners in the human proteome. Among these EML3, a microtubule-binding protein involved in mitosis contains an exact match of the phage-evolved consensus and binds to DYNLL with nanomolar affinity. These results significantly widen the scope of the human interactome around DYNLL and will certainly shed more light on the biological functions and organizing role of DYNLL in the human and other eukaryotic interactomes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Crystal structure of the S100A4-nonmuscle myosin IIA tail fragment complex reveals an asymmetric target binding mechanism

Bence Kiss; Annette Duelli; László Radnai; Katalin A. Kékesi; Gergely Katona; László Nyitray

S100A4 is a member of the S100 family of calcium-binding proteins that is directly involved in tumor metastasis. It binds to the nonmuscle myosin IIA (NMIIA) tail near the assembly competence domain (ACD) promoting filament disassembly, which could be associated with increasing metastatic potential of tumor cells. Here, we investigate the mechanism of S100A4–NMIIA interaction based on binding studies and the crystal structure of S100A4 in complex with a 45-residue-long myosin heavy chain fragment. Interestingly, we also find that S100A4 binds as strongly to a homologous heavy chain fragment of nonmuscle myosin IIC as to NMIIA. The structure of the S100A4–NMIIA complex reveals a unique mode of interaction in the S100 family: A single, predominantly α-helical myosin chain is wrapped around the Ca2+-bound S100A4 dimer occupying both hydrophobic binding pockets. Thermal denaturation experiments of coiled-coil forming NMIIA fragments indicate that the coiled-coil partially unwinds upon S100A4 binding. Based on these results, we propose a model for NMIIA filament disassembly: Part of the random coil tailpiece and the C-terminal residues of the coiled-coil are wrapped around an S100A4 dimer disrupting the ACD and resulting in filament dissociation. The description of the complex will facilitate the design of specific drugs that interfere with the S100A4–NMIIA interaction.

Collaboration


Dive into the Gergely Katona's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Neutze

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Balázs Rózsa

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Annemarie B. Wöhri

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

David Arnlund

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Ida Lundholm

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

László Nyitray

Eötvös Loránd University

View shared research outputs
Researchain Logo
Decentralizing Knowledge