David B. Medeiros
Universidade Federal de Viçosa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David B. Medeiros.
Plant Physiology | 2016
David B. Medeiros; Samuel C. V. Martins; João Henrique F. Cavalcanti; Danilo M. Daloso; Enrico Martinoia; Adriano Nunes-Nesi; Fábio M. DaMatta; Alisdair R. Fernie; Wagner L. Araújo
Impaired stomatal closure in a anion channel mutant is accompanied by increased mesophyll conductance, photosynthesis, and leaf area, ultimately enhancing biomass accumulation under controlled conditions. Stomata control the exchange of CO2 and water vapor in land plants. Thus, whereas a constant supply of CO2 is required to maintain adequate rates of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. Accordingly, the uptake or release of ions and metabolites from guard cells is necessary to achieve normal stomatal function. The AtQUAC1, an R-type anion channel responsible for the release of malate from guard cells, is essential for efficient stomatal closure. Here, we demonstrate that mutant plants lacking AtQUAC1 accumulated higher levels of malate and fumarate. These mutant plants not only display slower stomatal closure in response to increased CO2 concentration and dark but are also characterized by improved mesophyll conductance. These responses were accompanied by increases in both photosynthesis and respiration rates, without affecting the activity of photosynthetic and respiratory enzymes and the expression of other transporter genes in guard cells, which ultimately led to improved growth. Collectively, our results highlight that the transport of organic acids plays a key role in plant cell metabolism and demonstrate that AtQUAC1 reduce diffusive limitations to photosynthesis, which, at least partially, explain the observed increments in growth under well-watered conditions.
Plant Cell and Environment | 2015
David B. Medeiros; Danilo M. Daloso; Alisdair R. Fernie; Zoran Nikoloski; Wagner L. Araújo
Stomata control the concomitant exchange of CO2 and transpiration in land plants. While a constant supply of CO2 is need to maintain the rate of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. The factors affecting stomatal movement are directly coupled with the cellular networks of guard cells. Although the guard cell has been used as a model for characterization of signaling pathways, several important questions about its functioning remain elusive. Current modeling approaches describe the stomatal conductance in terms of relatively few easy-to-measure variables being unsuitable for in silico design of genetic manipulation strategies. Here, we argue that a system biology approach, combining modeling and high-throughput experiments, may be used to elucidate the mechanisms underlying stomata control and to determine targets for modulation of stomatal responses to environment. In support of our opinion, we review studies demonstrating how high-throughput approaches have provided a systems-view of guard cells. Finally, we emphasize the opportunities and challenges of genome-scale modeling and large-scale data integration for in silico manipulation of guard cell functions to improve crop yields, particularly under stress conditions which are of pertinence both to climate change and water use efficiency.
Plant Physiology | 2017
Jessica Aline S. Barros; João Henrique F. Cavalcanti; David B. Medeiros; Adriano Nunes-Nesi; Tamar Avin-Wittenberg; Alisdair R. Fernie; Wagner L. Araújo
During carbon starvation, autophagy is associated with protein degradation and impact energy status by regulating alternative respiration via the ETF/ETFQO through a yet unclear mechanism. Under heterotrophic conditions, carbohydrate oxidation inside the mitochondrion is the primary energy source for cellular metabolism. However, during energy-limited conditions, alternative substrates are required to support respiration. Amino acid oxidation in plant cells plays a key role in this by generating electrons that can be transferred to the mitochondrial electron transport chain via the electron transfer flavoprotein/ubiquinone oxidoreductase system. Autophagy, a catabolic mechanism for macromolecule and protein recycling, allows the maintenance of amino acid pools and nutrient remobilization. Although the association between autophagy and alternative respiratory substrates has been suggested, the extent to which autophagy and primary metabolism interact to support plant respiration remains unclear. To investigate the metabolic importance of autophagy during development and under extended darkness, Arabidopsis (Arabidopsis thaliana) mutants with disruption of autophagy (atg mutants) were used. Under normal growth conditions, atg mutants showed lower growth and seed production with no impact on photosynthesis. Following extended darkness, atg mutants were characterized by signatures of early senescence, including decreased chlorophyll content and maximum photochemical efficiency of photosystem II coupled with increases in dark respiration. Transcript levels of genes involved in alternative pathways of respiration and amino acid catabolism were up-regulated in atg mutants. The metabolite profiles of dark-treated leaves revealed an extensive metabolic reprogramming in which increases in amino acid levels were partially compromised in atg mutants. Although an enhanced respiration in atg mutants was observed during extended darkness, autophagy deficiency compromises protein degradation and the generation of amino acids used as alternative substrates to the respiration.
New Phytologist | 2017
Danilo M. Daloso; David B. Medeiros; Letícia dos Anjos; Takuya Yoshida; Wagner L. Araújo; Alisdair R. Fernie
Contents 1018 I. 1018 II. 1019 III. 1022 IV. 1025 V. 1026 VI. 1029 1030 References 1030 SUMMARY: Stomata are leaf epidermal structures consisting of two guard cells surrounding a pore. Changes in the aperture of this pore regulate plant water-use efficiency, defined as gain of C by photosynthesis per leaf water transpired. Stomatal aperture is actively regulated by reversible changes in guard cell osmolyte content. Despite the fact that guard cells can photosynthesize on their own, the accumulation of mesophyll-derived metabolites can seemingly act as signals which contribute to the regulation of stomatal movement. It has been shown that malate can act as a signalling molecule and a counter-ion of potassium, a well-established osmolyte that accumulates in the vacuole of guard cells during stomatal opening. By contrast, their efflux from guard cells is an important mechanism during stomatal closure. It has been hypothesized that the breakdown of starch, sucrose and lipids is an important mechanism during stomatal opening, which may be related to ATP production through glycolysis and mitochondrial metabolism, and/or accumulation of osmolytes such as sugars and malate. However, experimental evidence supporting this theory is lacking. Here we highlight the particularities of guard cell metabolism and discuss this in the context of the guard cells themselves and their interaction with the mesophyll cells.
Food Chemistry | 2017
Gláucia Michelle Cosme Silva; Willian Batista Silva; David B. Medeiros; Acácio Rodrigues Salvador; Maria Helena Menezes Cordeiro; Natália Martins da Silva; Diederson Bortolini Santana; Gisele Polete Mizobutsi
Mango is a highly perishable fruit with a short post-harvest time due to the intense metabolic activity after harvesting. In attempt to evaluate the effects of chitosan in mango fruits, it was treated with 0%, 1%, 2% or 3% of chitosan solutions, placed into plastic trays, and stored at room temperature. Changes in physical and chemical parameters were evaluated. Chitosan delayed the climacteric peak, water loss and firmness. Further, few changes in soluble solid content, titratable acidity, pH of the pulp as well as in sugar content and decreased starch degradation were observed. Altogether, our results suggest chitosan edible coating effectively prolongs the quality attributes, affecting basic mitochondrial respiration and starch degradation rate.
Plant Physiology | 2017
David B. Medeiros; Kallyne A. Barros; Jessica Aline S. Barros; Rebeca Patricia Omena-Garcia; Stéphanie Arrivault; Lilian Vincis Pereira Sanglard; Kelly C. Detmann; Willian Batista Silva; Danilo M. Daloso; Fábio M. DaMatta; Adriano Nunes-Nesi; Alisdair R. Fernie; Wagner L. Araújo
Manipulation of tonoplastic organic acid transport by inhibition of the tDT impacts mitochondrion metabolism, while the overall stomatal and photosynthetic performance is not affected. Malate is a central metabolite involved in a multiplicity of plant metabolic pathways, being associated with mitochondrial metabolism and playing significant roles in stomatal movements. Vacuolar malate transport has been characterized at the molecular level and is performed by at least one carrier protein and two channels in Arabidopsis (Arabidopsis thaliana) vacuoles. The absence of the Arabidopsis tonoplast Dicarboxylate Transporter (tDT) in the tdt knockout mutant was associated previously with an impaired accumulation of malate and fumarate in leaves. Here, we investigated the consequences of this lower accumulation on stomatal behavior and photosynthetic capacity as well as its putative metabolic impacts. Neither the stomatal conductance nor the kinetic responses to dark, light, or high CO2 were highly affected in tdt plants. In addition, we did not observe any impact on stomatal aperture following incubation with abscisic acid, malate, or citrate. Furthermore, an effect on photosynthetic capacity was not observed in the mutant lines. However, leaf mitochondrial metabolism was affected in the tdt plants. Levels of the intermediates of the tricarboxylic acid cycle were altered, and increases in both light and dark respiration were observed. We conclude that manipulation of the tonoplastic organic acid transporter impacted mitochondrial metabolism, while the overall stomatal and photosynthetic capacity were unaffected.
Food Chemistry | 2018
Willian Batista Silva; Gláucia Michelle Cosme Silva; Diederson Bortolini Santana; Acácio Rodrigues Salvador; David B. Medeiros; Ikram Belghith; Natália Martins da Silva; Maria Helena Menezes Cordeiro; Gisele Polete Misobutsi
Guava is a typically tropical fruit highly perishable with a short shelf-life due to intense metabolic activity after harvested. In attempt to minimize the problems related to the postharvest, we evaluated the physiochemical characteristics and antioxidant system in guava fruits under chitosan coating at concentrations of 1%, 2%, and 3% stored at 25°C during 96h. The chitosan suppressed the respiratory rate, fresh weight loss, firmness and skin color with delay in the degradation of chlorophyll. In the treatment with 2% and 3% of chitosan in the solid soluble content and ascorbic acid were reduced; retarded the loss of titratable acidity during 96h after treatment. These treatment induced significant decreases in the phenylalanine ammonia-lyase activity and significantly increases of peroxidase Activity. Our results suggest that chitosan effectively prolongs the quality attributes in guava fruits after harvesting due to increases in the antioxidant processes, delaying the ripening during room temperature of storage.
Plant Journal | 2018
David B. Medeiros; L. P. de Souza; Werner Camargos Antunes; Wagner L. Araújo; Danilo M. Daloso; Alisdair R. Fernie
Sucrose has long been thought to play an osmolytic role in stomatal opening. However, recent evidence supports the idea that the role of sucrose in this process is primarily energetic. Here we used a combination of stomatal aperture assays and kinetic [U-13 C]-sucrose isotope labelling experiments to confirm that sucrose is degraded during light-induced stomatal opening and to define the fate of the C released from sucrose breakdown. We additionally show that addition of sucrose to the medium did not enhance light-induced stomatal opening. The isotope experiment showed a consistent 13 C enrichment in fructose and glucose, indicating that during light-induced stomatal opening sucrose is indeed degraded. We also observed a clear 13 C enrichment in glutamate and glutamine (Gln), suggesting a concerted activation of sucrose degradation, glycolysis and the tricarboxylic acid cycle. This is in contrast to the situation for Gln biosynthesis in leaves under light, which has been demonstrated to rely on previously stored C. Our results thus collectively allow us to redraw current models concerning the influence of sucrose during light-induced stomatal opening, in which, instead of being accumulated, sucrose is degraded providing C skeletons for Gln biosynthesis.
Trends in Plant Science | 2018
David B. Medeiros; Alisdair R. Fernie; Wagner L. Araújo
It has been demonstrated that ALMT (ALUMINUM-ACTIVATED MALATE TRANSPORTER) channels are important players during stomatal movements. Previous investigations on ALMT family members indicated possible redundancy at the guard cell tonoplast; however, compelling evidence has recently suggested regulatory mechanisms and individual roles for specific ALMT proteins in response to diverse environmental stimuli.
Plant Signaling & Behavior | 2018
V. F. Lima; David B. Medeiros; L. Dos Anjos; J. Gago; Alisdair R. Fernie; Danilo M. Daloso
ABSTRACT Plant atmospheric CO2 fixation depends on the aperture of stomatal pores at the leaf epidermis. Stomatal aperture or closure is regulated by changes in the metabolism of the two surrounding guard cells, which respond directly to environmental and internal cues such as mesophyll-derived metabolites. Sucrose has been shown to play a dual role during stomatal movements. The sucrose produced in the mesophyll cells can be transported to the vicinity of the guard cells via the transpiration stream, inducing closure in periods of high photosynthetic rate. By contrast, sucrose breakdown within guard cells sustains glycolysis and glutamine biosynthesis during light-induced stomatal opening. Here, we provide an update regarding the role of sucrose in the regulation of stomatal movement highlighting recent findings from metabolic and systems biology studies. We further explore how sucrose-mediated mechanisms of stomatal movement regulation could be useful to understand evolution of stomatal physiology among different plant groups.