Fábio M. DaMatta
Universidade Federal de Viçosa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fábio M. DaMatta.
Brazilian Journal of Plant Physiology | 2006
Fábio M. DaMatta; José C. Ramalho
Overall, drought and unfavourable temperatures are the major climatic limitations for coffee production. These limitations are expected to become increasingly important in several coffee growing regions due to the recognized changes in global climate, and also because coffee cultivation has spread towards marginal lands, where water shortage and unfavourable temperatures constitute major constraints to coffee yield. In this review, we examine the impacts of such limitations on the physiology, and consequently on the production of mainly Coffea arabica and C. canephora, which account for about 99 % of the world coffee bean production. The first section deals with climatic factors and the coffee plant’s requirements. The importance of control ling oxidative stress for the expression of drought and cold tolerance abilities is emphasized in the second section. In the third section, we examine the impacts of drought on cell-water relations, stomatal behaviour and water use, photosynthesis and crop yield, carbon and nitrogen metabolism, root growth and characteristics, and on drought tolerance. In the fourth section, the impacts of low positive and high temperatures on coffee physiology are discussed; some insights about effects of negative temperatures are also presented. Finally, the last section deals with shading in harsh environments as a mean of buffering climatic fluctuations, as well as of increasing environmental sustainability in cof fee exploitation.
Environmental and Experimental Botany | 2002
Ana Lúcia S Lima; Fábio M. DaMatta; Hugo Alves Pinheiro; Marcos Rogério Tótola; Marcelo Ehlers Loureiro
Abstract The effects of water deficit on photochemical parameters and activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), as well as, cellular damages were investigated in two clones of Coffea canephora differing in drought tolerance. After 6 days without irrigation, predawn leaf water potential fell to −3.0 MPa that was accompanied by the suppression of net photosynthesis in both clones. The variable to maximum chlorophyll fluorescence ratio remained unchanged regardless of the imposed treatments. Both clones showed a similar decline (about 25%) in the photochemical quenching coefficient, but only the drought-sensitive clone exhibited an enhancement (31%) of thermal deactivation under water deficit conditions. The quantum yield of electron transport decreased similarly in both genotypes. Under drought conditions, activities of SOD, CAT and APX increased to a greater extent in the drought-tolerant clone than in the drought-sensitive one. This seemed to be matched with higher protection against oxidative stress, as judged from the lower levels of lipid peroxidation and electrolyte leakage in the drought-tolerant clone. Thus, the ability to increase the antioxidant system activity in order to limit cellular damages might be an important attribute linked to the drought tolerance in C. canephora.
Brazilian Journal of Plant Physiology | 2007
Fábio M. DaMatta; Cláudio Pagotto Ronchi; Moacyr Maestri; Raimundo Santos Barros
, which together account for 99% of the world coffee bean production. Thisreview is organized into sections dealing with (i) climatic factors and environmental requirements, (ii) root and shootgrowth, (iii) blossoming synchronisation, fruiting and cup quality, (iv) competition between vegetative andreproductive growth and branch die-back, (v) photosynthesis and crop yield, (vi) physiological components of cropyield, (vii) shading and agroforestry systems, and (viii) high-density plantings.
The Plant Cell | 2011
Wagner L. Araújo; Adriano Nunes-Nesi; Sonia Osorio; Björn Usadel; Daniela Fuentes; Réka Nagy; Ilse Balbo; Martin Lehmann; Claudia Studart-Witkowski; Takayuki Tohge; Enrico Martinoia; Xavier Jordana; Fábio M. DaMatta; Alisdair R. Fernie
The antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase in tomato increases photosynthesis and biomass via an organic acid–mediated effect on stomatal aperture. This finding reinforces earlier suggestions that malate plays a crucial role in stomatal opening and supports the hypothesis that stomatal function can be regulated remotely via mesophyll-generated cues. Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the Sl SDH2-2 gene encoding the iron sulfur subunit of the succinate dehydrogenase protein complex in the antisense orientation under the control of the 35S promoter exhibit an enhanced rate of photosynthesis. The rate of the tricarboxylic acid (TCA) cycle was reduced in these transformants, and there were changes in the levels of metabolites associated with the TCA cycle. Furthermore, in comparison to wild-type plants, carbon dioxide assimilation was enhanced by up to 25% in the transgenic plants under ambient conditions, and mature plants were characterized by an increased biomass. Analysis of additional photosynthetic parameters revealed that the rate of transpiration and stomatal conductance were markedly elevated in the transgenic plants. The transformants displayed a strongly enhanced assimilation rate under both ambient and suboptimal environmental conditions, as well as an elevated maximal stomatal aperture. By contrast, when the Sl SDH2-2 gene was repressed by antisense RNA in a guard cell–specific manner, changes in neither stomatal aperture nor photosynthesis were observed. The data obtained are discussed in the context of the role of TCA cycle intermediates both generally with respect to photosynthetic metabolism and specifically with respect to their role in the regulation of stomatal aperture.
Plant Science | 2003
Fábio M. DaMatta; Agnaldo Rodrigues de Melo Chaves; Hugo Alves Pinheiro; Carlos Ducatti; Marcelo Ehlers Loureiro
We compared tolerance to soil drought of two field-grown clones of Coffea canephora (clone 46, drought-sensitive; and clone 120, drought-tolerant). Under irrigation, there were no marked differences between the clones in water relation parameters, gas exchange and total leaf area. Under rainfed conditions, clone 46 showed osmotic adjustment and increased tissue rigidity. These adjustments, however, were incapable of preventing substantial decreases in xylem pressure potential. By contrast, clone 120 did not exhibit osmotic adjustment, but was able to increase tissue elasticity and to maintain xylem pressure potentials to a greater extent than clone 46 (despite having twice the total leaf area of this clone). Stomatal conductance was lowered by drought in clone 120 but not in clone 46. Carbon assimilation per unit leaf area in both clones remained unaffected under stress. Long-term water use efficiency (WUE), as estimated through carbon isotope discrimination, was consistently greater in clone 120 than in clone 46. Because of these traits, clone 120 was better able to postpone dehydration and to maintain whole-tree photosynthesis. It is proposed that these features should decisively contribute to buffer its productivity in drought-prone areas.
New Phytologist | 2012
Kelly C. Detmann; Wagner L. Araújo; Samuel C. V. Martins; Lílian M. V. P. Sanglard; Josimar V. Reis; Edenio Detmann; Fabrício Ávila Rodrigues; Adriano Nunes-Nesi; Alisdair R. Fernie; Fábio M. DaMatta
Silicon (Si) is not considered to be an essential element for higher plants and is believed to have no effect on primary metabolism in unstressed plants. In rice (Oryza sativa), Si nutrition improves grain production; however, no attempt has been made to elucidate the physiological mechanisms underlying such responses. Here, we assessed crop yield and combined advanced gas exchange analysis with carbon isotope labelling and metabolic profiling to measure the effects of Si nutrition on rice photosynthesis, together with the associated metabolic changes, by comparing wild-type rice with the low-Si rice mutant lsi1 under unstressed conditions. Si improved the harvest index, paralleling an increase in nitrogen use efficiency. Higher crop yields associated with Si nutrition exerted a feed-forward effect on photosynthesis which was fundamentally associated with increased mesophyll conductance. By contrast, Si nutrition did not affect photosynthetic gas exchange during the vegetative growth phase or in de-grained plants. In addition, Si nutrition altered primary metabolism by stimulating amino acid remobilization. Our results indicate a stimulation of the source capacity, coupled with increased sink demand, in Si-treated plants; therefore, we identify Si nutrition as an important target in attempts to improve the agronomic yield of rice.
New Phytologist | 2008
Fábio M. DaMatta; R. L. Cunha; Werner C. Antunes; Samuel C. V. Martins; Wagner L. Araújo; Alisdair R. Fernie; Gustavo A. B. K. Moraes
Perturbations of the source-sink balances were performed in field-grown coffee (Coffea arabica) trees to investigate the possible role of carbohydrates in feedback regulation of photosynthesis. Four treatments were applied at the whole-plant level: (i) complete defruiting and maintenance of the full leaf area, (ii) the half crop load and full leaf area, (iii) the full crop load and full leaf area and (iv) the full crop load and half leaf area. Sampling and measurements were performed twice during the phase of dry matter accumulation of fruits. Gas exchange, chlorophyll a fluorescence, carbon isotope labelling and steady-state metabolite measurements were assessed in source leaves. The average rate of net photosynthetic rate (A) and stomatal conductance (g(s)) were larger (> 50%), and carbon isotope composition ratio was lower, in trees with a full crop load and half leaf area than in defruited trees, with individuals of the other two treatments showing intermediate values. However, differences in A seem unlikely to have been caused either by photochemical impairments or a direct end-product-mediated feedback down-regulation of photosynthesis. It is proposed that the decreased A in defruited coffee trees was independent of carbon metabolism and was rather directly related to a lower CO(2) availability coupled to lower g(s).
Journal of Plant Physiology | 2002
Fábio M. DaMatta; Rodolfo A. Loos; Emerson A. Silva; Marcelo Ehlers Loureiro
Summary Plants of C. canephora grown in pots under low nitrogen (LN) or high nitrogen (HN) applications were submitted to either cyclic water stress or daily irrigation. Water deficit led to marked decreases in net carbon assimilation rate (A) and, to a lesser extent, in stomatal conductance (gs), regardless of the N treatments. In well-watered plants, A appreciably increased in HN plants relative to LN plants without significant changes in gs. As a whole, changes in internal CO2 concentration predominantly reflected changes in A rather than in gs. Under irrigated conditions, A, but not gs, correlated with leaf N concentration in a curvilinear way. Photosynthetic nitrogen-use efficiency was considerably low, and decreased with increasing leaf N concentration. Limited N, but not water, slightly decreased the maximum photochemical efficiency of photosystem II (PSII). Under continuous irrigation, LN plants had a smaller quantum yield of electron transport (ϕPSII) through slight decreases of photochemical quenching (qp) and capture efficiency of excitation energy by open PSII reaction centres, and increases in Stern-Volmer non-photochemical quenching. Under water-stressed conditions, changes in PSII photochemistry were apparent only in HN plants, with a 25 % decrease in ϕPSII, due mainly to variations in qp. Biochemical constraints, rather than stomatal or photochemical limitations, provoked the decreases in A under limited supply of either N or water.
Journal of Experimental Botany | 2012
Pierre Marraccini; Felipe Vinecky; Gabriel Sergio Costa Alves; Humberto J.O. Ramos; Sonia Elbelt; Natalia Gomes Vieira; Fernanda A Carneiro; Patricia. S Sujii; Jean Carlos Alekcevetch; Vânia Aparecida Silva; Fábio M. DaMatta; Maria Amélia Gava Ferrão; Thierry Leroy; David Pot; Luiz Gonzaga Esteves Vieira; Felipe Rodrigues da Silva; Alan Carvalho Andrade
The aim of this study was to investigate the molecular mechanisms underlying drought acclimation in coffee plants by the identification of candidate genes (CGs) using different approaches. The first approach used the data generated during the Brazilian Coffee expressed sequence tag (EST) project to select 13 CGs by an in silico analysis (electronic northern). The second approach was based on screening macroarrays spotted with plasmid DNA (coffee ESTs) with separate hybridizations using leaf cDNA probes from drought-tolerant and susceptible clones of Coffea canephora var. Conilon, grown under different water regimes. This allowed the isolation of seven additional CGs. The third approach used two-dimensional gel electrophoresis to identify proteins displaying differential accumulation in leaves of drought-tolerant and susceptible clones of C. canephora. Six of them were characterized by MALDI-TOF-MS/MS (matrix-assisted laser desorption-time of flight-tandem mass spectrometry) and the corresponding proteins were identified. Finally, additional CGs were selected from the literature, and quantitative real-time polymerase chain reaction (qPCR) was performed to analyse the expression of all identified CGs. Altogether, >40 genes presenting differential gene expression during drought acclimation were identified, some of them showing different expression profiles between drought-tolerant and susceptible clones. Based on the obtained results, it can be concluded that factors involved a complex network of responses probably involving the abscisic signalling pathway and nitric oxide are major molecular determinants that might explain the better efficiency in controlling stomata closure and transpiration displayed by drought-tolerant clones of C. canephora.
Functional Plant Biology | 2006
Cláudio Pagotto Ronchi; Fábio M. DaMatta; Karine D. Batista; Gustavo A. B. K. Moraes; Marcelo Ehlers Loureiro; Carlos Ducatti
Coffee (Coffea arabica L.) plants were grown in small (3-L), medium (10-L) and large (24-L) pots for 115 or 165 d after transplanting (DAT), which allowed different degrees of root restriction. Effects of altered source : sink ratio were evaluated in order to explore possible stomatal and non-stomatal mechanisms of photosynthetic down-regulation. Increasing root restriction brought about large and general reductions in plant growth associated with a rising root : shoot ratio. Treatments did not affect leaf water potential or leaf nutrient status, with the exception of N content, which dropped significantly with increasing root restriction even though an adequate N supply was available. Photosynthesis was severely reduced when plants were grown in small pots; this was largely associated with non-stomatal factors, such as decreased Rubisco activity. At 165 DAT contents of hexose, sucrose, and amino acids decreased in plants grown in smaller pots, while those of starch and hexose-P increased in plants grown in smaller pots. Photosynthetic rates were negatively correlated with the ratio of hexose to free amino acids, but not with hexose content. Activities of acid invertase, sucrose synthase, sucrose-P synthase, fructose-1,6-bisphosphatase, ADP-glucose pyrophosphorylase, starch phosphorylase, glyceraldehyde-3-P dehydrogenase, PPi : fructose-6-P 1-phosphotransferase and NADP : glyceraldehyde-3-P dehydrogenase all decreased with severe root restriction. Glycerate-3-P : Pi and glucose-6-P : fructose-6-P ratios decreased accordingly. Photosynthetic down-regulation was unlikely to have been associated directly with an end-product limitation, but rather with decreases in Rubisco. Such a down-regulation was largely a result of N deficiency caused by growing coffee plants in small pots.
Collaboration
Dive into the Fábio M. DaMatta's collaboration.
Agnaldo Rodrigues de Melo Chaves
Empresa Brasileira de Pesquisa Agropecuária
View shared research outputs