Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David B. Neale is active.

Publication


Featured researches published by David B. Neale.


Genetics | 2006

Association genetics in Pinus taeda L. I. wood property traits

Santiago C. González-Martínez; Nicholas C. Wheeler; Elhan S. Ersoz; C. Dana Nelson; David B. Neale

Genetic association is a powerful method for dissecting complex adaptive traits due to (i) fine-scale mapping resulting from historical recombination, (ii) wide coverage of phenotypic and genotypic variation within a single experiment, and (iii) the simultaneous discovery of loci and alleles. In this article, genetic association among single nucleotide polymorphisms (58 SNPs) from 20 wood- and drought-related candidate genes and an array of wood property traits with evolutionary and commercial importance, namely, earlywood and latewood specific gravity, percentage of latewood, earlywood microfibril angle, and wood chemistry (lignin and cellulose content), was tested using mixed linear models (MLMs) that account for relatedness among individuals by using a pairwise kinship matrix. Population structure, a common systematic bias in association studies, was assessed using 22 nuclear microsatellites. Different phenotype:genotype associations were found, some of them confirming previous evidence from collocation of QTL and genes in linkage maps (for example, 4cl and percentage of latewood) and two that involve nonsynonymous polymorphisms (cad SNP M28 with earlywood specific gravity and 4cl SNP M7 with percentage of latewood). The strongest genetic association found in this study was between allelic variation in α-tubulin, a gene involved in the formation of cortical microtubules, and earlywood microfibril angle. Intragenic LD decays rapidly in conifers; thus SNPs showing genetic association are likely to be located in close proximity to the causative polymorphisms. This first multigene association genetic study in forest trees has shown the feasibility of candidate gene strategies for dissecting complex adaptive traits, provided that genes belonging to key pathways and appropriate statistical tools are used. This approach is of particular utility in species such as conifers, where genomewide strategies are limited by their large genomes.


Genetics | 2010

Patterns of Population Structure and Environmental Associations to Aridity Across the Range of Loblolly Pine (Pinus taeda L., Pinaceae)

Andrew J. Eckert; Joost van Heerwaarden; Jill L. Wegrzyn; C. Dana Nelson; Jeffrey Ross-Ibarra; Santiago C. González-Martínez; David B. Neale

Natural populations of forest trees exhibit striking phenotypic adaptations to diverse environmental gradients, thereby making them appealing subjects for the study of genes underlying ecologically relevant phenotypes. Here, we use a genome-wide data set of single nucleotide polymorphisms genotyped across 3059 functional genes to study patterns of population structure and identify loci associated with aridity across the natural range of loblolly pine (Pinus taeda L.). Overall patterns of population structure, as inferred using principal components and Bayesian cluster analyses, were consistent with three genetic clusters likely resulting from expansions out of Pleistocene refugia located in Mexico and Florida. A novel application of association analysis, which removes the confounding effects of shared ancestry on correlations between genetic and environmental variation, identified five loci correlated with aridity. These loci were primarily involved with abiotic stress response to temperature and drought. A unique set of 24 loci was identified as FST outliers on the basis of the genetic clusters identified previously and after accounting for expansions out of Pleistocene refugia. These loci were involved with a diversity of physiological processes. Identification of nonoverlapping sets of loci highlights the fundamental differences implicit in the use of either method and suggests a pluralistic, yet complementary, approach to the identification of genes underlying ecologically relevant phenotypes.


Genome Biology | 2014

Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies

David B. Neale; Jill L. Wegrzyn; Kristian A. Stevens; Aleksey V. Zimin; Daniela Puiu; Marc W. Crepeau; Charis Cardeno; Maxim Koriabine; Ann Holtz-Morris; John D. Liechty; Pedro J. Martínez-García; Hans A. Vasquez-Gross; Brian Y. Lin; Jacob J. Zieve; William M. Dougherty; Sara Fuentes-Soriano; Le Shin Wu; Don Gilbert; Guillaume Marçais; Michael Roberts; Carson Holt; Mark Yandell; John M. Davis; Katherine E. Smith; Jeffrey F. D. Dean; W. Walter Lorenz; Ross W. Whetten; Ronald R. Sederoff; Nicholas Wheeler; Patrick E. McGuire

BackgroundThe size and complexity of conifer genomes has, until now, prevented full genome sequencing and assembly. The large research community and economic importance of loblolly pine, Pinus taeda L., made it an early candidate for reference sequence determination.ResultsWe develop a novel strategy to sequence the genome of loblolly pine that combines unique aspects of pine reproductive biology and genome assembly methodology. We use a whole genome shotgun approach relying primarily on next generation sequence generated from a single haploid seed megagametophyte from a loblolly pine tree, 20-1010, that has been used in industrial forest tree breeding. The resulting sequence and assembly was used to generate a draft genome spanning 23.2 Gbp and containing 20.1 Gbp with an N50 scaffold size of 66.9 kbp, making it a significant improvement over available conifer genomes. The long scaffold lengths allow the annotation of 50,172 gene models with intron lengths averaging over 2.7 kbp and sometimes exceeding 100 kbp in length. Analysis of orthologous gene sets identifies gene families that may be unique to conifers. We further characterize and expand the existing repeat library based on the de novo analysis of the repetitive content, estimated to encompass 82% of the genome.ConclusionsIn addition to its value as a resource for researchers and breeders, the loblolly pine genome sequence and assembly reported here demonstrates a novel approach to sequencing the large and complex genomes of this important group of plants that can now be widely applied.


Genetics | 2006

DNA Sequence Variation and Selection of Tag Single-Nucleotide Polymorphisms at Candidate Genes for Drought-Stress Response in Pinus taeda L.

Santiago C. González-Martínez; Elhan S. Ersoz; Garth R. Brown; Nicholas C. Wheeler; David B. Neale

Genetic association studies are rapidly becoming the experimental approach of choice to dissect complex traits, including tolerance to drought stress, which is the most common cause of mortality and yield losses in forest trees. Optimization of association mapping requires knowledge of the patterns of nucleotide diversity and linkage disequilibrium and the selection of suitable polymorphisms for genotyping. Moreover, standard neutrality tests applied to DNA sequence variation data can be used to select candidate genes or amino acid sites that are putatively under selection for association mapping. In this article, we study the pattern of polymorphism of 18 candidate genes for drought-stress response in Pinus taeda L., an important tree crop. Data analyses based on a set of 21 putatively neutral nuclear microsatellites did not show population genetic structure or genomewide departures from neutrality. Candidate genes had moderate average nucleotide diversity at silent sites (πsil = 0.00853), varying 100-fold among single genes. The level of within-gene LD was low, with an average pairwise r2 of 0.30, decaying rapidly from ∼0.50 to ∼0.20 at 800 bp. No apparent LD among genes was found. A selective sweep may have occurred at the early-response-to-drought-3 (erd3) gene, although population expansion can also explain our results and evidence for selection was not conclusive. One other gene, ccoaomt-1, a methylating enzyme involved in lignification, showed dimorphism (i.e., two highly divergent haplotype lineages at equal frequency), which is commonly associated with the long-term action of balancing selection. Finally, a set of haplotype-tagging SNPs (htSNPs) was selected. Using htSNPs, a reduction of genotyping effort of ∼30–40%, while sampling most common allelic variants, can be gained in our ongoing association studies for drought tolerance in pine.


Genetics | 2009

Association Genetics of Coastal Douglas Fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-Hardiness Related Traits

Andrew J. Eckert; Andrew D. Bower; Jill L. Wegrzyn; Barnaly Pande; Kathleen D. Jermstad; Konstantin V. Krutovsky; J. Bradley St. Clair; David B. Neale

Adaptation to cold is one of the greatest challenges to forest trees. This process is highly synchronized with environmental cues relating to photoperiod and temperature. Here, we use a candidate gene-based approach to search for genetic associations between 384 single-nucleotide polymorphism (SNP) markers from 117 candidate genes and 21 cold-hardiness related traits. A general linear model approach, including population structure estimates as covariates, was implemented for each marker–trait pair. We discovered 30 highly significant genetic associations [false discovery rate (FDR) Q < 0.10] across 12 candidate genes and 10 of the 21 traits. We also detected a set of 7 markers that had elevated levels of differentiation between sampling sites situated across the Cascade crest in northeastern Washington. Marker effects were small (r2 < 0.05) and within the range of those published previously for forest trees. The derived SNP allele, as measured by a comparison to a recently diverged sister species, typically affected the phenotype in a way consistent with cold hardiness. The majority of markers were characterized as having largely nonadditive modes of gene action, especially underdominance in the case of cold-tolerance related phenotypes. We place these results in the context of trade-offs between the abilities to grow longer and to avoid fall cold damage, as well as putative epigenetic effects. These associations provide insight into the genetic components of complex traits in coastal Douglas fir, as well as highlight the need for landscape genetic approaches to the detection of adaptive genetic diversity.


Genetics | 2014

Sequencing and assembly of the 22-gb loblolly pine genome.

Aleksey V. Zimin; Kristian A. Stevens; Marc W. Crepeau; Ann Holtz-Morris; Maxim Koriabine; Guillaume Marçais; Daniela Puiu; Michael Roberts; Jill L. Wegrzyn; Pieter J. de Jong; David B. Neale; James A. Yorke; Charles H. Langley

Conifers are the predominant gymnosperm. The size and complexity of their genomes has presented formidable technical challenges for whole-genome shotgun sequencing and assembly. We employed novel strategies that allowed us to determine the loblolly pine (Pinus taeda) reference genome sequence, the largest genome assembled to date. Most of the sequence data were derived from whole-genome shotgun sequencing of a single megagametophyte, the haploid tissue of a single pine seed. Although that constrained the quantity of available DNA, the resulting haploid sequence data were well-suited for assembly. The haploid sequence was augmented with multiple linking long-fragment mate pair libraries from the parental diploid DNA. For the longest fragments, we used novel fosmid DiTag libraries. Sequences from the linking libraries that did not match the megagametophyte were identified and removed. Assembly of the sequence data were aided by condensing the enormous number of paired-end reads into a much smaller set of longer “super-reads,” rendering subsequent assembly with an overlap-based assembly algorithm computationally feasible. To further improve the contiguity and biological utility of the genome sequence, additional scaffolding methods utilizing independent genome and transcriptome assemblies were implemented. The combination of these strategies resulted in a draft genome sequence of 20.15 billion bases, with an N50 scaffold size of 66.9 kbp.


Tree Genetics & Genomes | 2013

Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate

Victoria L. Sork; Sally N. Aitken; Rodney J. Dyer; Andrew J. Eckert; P. Legendre; David B. Neale

The Forest ecosystem genomics Research: supporTing Transatlantic Cooperation project (FoResTTraC, http://www.foresttrac.eu/) sponsored a workshop in August 2010 to evaluate the potential for using a landscape genomics approach for studying plant adaptation to the environment and the potential of local populations for coping with changing climate. This paper summarizes our discussions and articulates a vision of how we believe forest trees offer an unparalleled opportunity to address fundamental biological questions, as well as how the application of landscape genomic methods complement to traditional forest genetic approaches that provide critical information needed for natural resource management. In this paper, we will cover four topics. First, we begin by defining landscape genomics and briefly reviewing the unique situation for tree species in the application of this approach toward understanding plant adaptation to the environment. Second, we review traditional approaches in forest genetics for studying local adaptation and identifying loci underlying locally adapted phenotypes. Third, we present existing and emerging methods available for landscape genomic analyses. Finally, we briefly touch on how these approaches can aid in understanding practical topics such as management of tree populations facing climate change.


Theoretical and Applied Genetics | 2000

Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties

M. M. Sewell; Mark F. Davis; Gerald A. Tuskan; Nicholas C. Wheeler; Carolyn C. Elam; D. L. Bassoni; David B. Neale

Abstract Chemical wood property traits were analyzed for the presence of quantitative trait loci (QTLs) in a three-generation outbred pedigree of loblolly pine (Pinus taeda L.). These traits were assayed using pyrolysis molecular beam mass spectrometry and include mass spectrum peak intensities associated with carbohydrates, α-cellulose and hemicellulose sugars, and lignin. Models for projection to latent structures (PLS) were used to also estimate the chemical composition of cell walls (i.e., α-cellulose, galactan and lignin) from mass spectrum data using multivariate regression. Both earlywood and latewood fractions from the fifth annual ring were analyzed for each trait. An interval mapping approach designed for an outbred pedigree was used to estimate the number of QTLs, the magnitude of QTL effects, and their genomic position. Eight unique QTLs influencing cell wall chemistry were detected from multiple peak intensities and/or PLS estimates using the one- and two-QTL models. Significant differences in chemical contents were observed among the populations from North Carolina vs Oklahoma, and results from QTL×environment analyses suggest that QTLs interact with environmental location. QTLs should be verified in larger experiments and in different genetic and environmental backgrounds. QTL mapping will help towards eventually identifying genes having a major effect on chemical wood properties.


Current Opinion in Plant Biology | 2008

Population, quantitative and comparative genomics of adaptation in forest trees

David B. Neale; Pär K. Ingvarsson

High-throughput DNA sequencing and genotyping technologies have enabled a new generation of research in plant genetics where combined quantitative and population genetic approaches can be used to better understand the relationship between naturally occurring genotypic and phenotypic diversity. Forest trees are highly amenable to such studies because of their combined undomesticated and partially domesticated state. Forest geneticists are using association genetics to dissect complex adaptive traits and discover the underlying genes. In parallel, they are using resequencing of candidate genes and modern population genetics methods to discover genes under natural selection. This combined approach is identifying the most important genes that determine patterns of complex trait adaptation observed in many tree populations.


Heredity | 2008

Association genetics in Pinus taeda L. II. Carbon isotope discrimination

Santiago C. González-Martínez; Dudley A. Huber; E Ersoz; John M. Davis; David B. Neale

Dissection of complex traits that influence fitness is not only a central topic in evolutionary research but can also assist breeding practices for economically important plant species, such as loblolly pine (Pinus taeda L). In this study, 46 single nucleotide polymorphisms (SNPs) from 41 disease and abiotic stress-inducible genes were tested for their genetic association with carbon isotope discrimination (CID), a time-integrated trait measure of stomatal conductance. A family-based approach to detect genotype/phenotype genetic association was developed for the first time in plants by applying the quantitative transmission disequilibrium test on an association population of 961 clones from 61 families (adopted from previous breeding programs) evaluated for phenotypic expression of CID at two sites. Two particularly promising candidates for their genetic effects on CID are: dhn-1, involved in stabilization of cell structures, and lp5-like, a glycine rich protein putatively related to cell wall reinforcement proteins, both of which were shown in previous studies to be water-deficit inducible. Moreover, association in lp5-like involves a nonsynonymous mutation in linkage disequilibrium with two other nonsynonymous polymorphisms that could, by acting together, enhance overall phenotypic effects. This study highlights the complexity of dissecting CID traits and provides insights for designing second-generation association studies based on candidate gene approaches in forest trees.

Collaboration


Dive into the David B. Neale's collaboration.

Top Co-Authors

Avatar

Jill L. Wegrzyn

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Eckert

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Mosca

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas C. Wheeler

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Daniela Puiu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge