Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Bhella is active.

Publication


Featured researches published by David Bhella.


Cell | 2008

Adenovirus Serotype 5 Hexon Mediates Liver Gene Transfer

Simon N. Waddington; John H. McVey; David Bhella; Alan L. Parker; Kristeen Barker; Hideko Atoda; Rebecca Pink; Suzanne M. K. Buckley; Jenny A. Greig; Laura Denby; Jerome Custers; Takashi Morita; Ivo M. B. Francischetti; Robson Q. Monteiro; Dan H. Barouch; Nico van Rooijen; Claudio Napoli; Menzo Jans Emco Havenga; Stuart A. Nicklin; Andrew H. Baker

Adenoviruses are used extensively as gene transfer agents, both experimentally and clinically. However, targeting of liver cells by adenoviruses compromises their potential efficacy. In cell culture, the adenovirus serotype 5 fiber protein engages the coxsackievirus and adenovirus receptor (CAR) to bind cells. Paradoxically, following intravascular delivery, CAR is not used for liver transduction, implicating alternate pathways. Recently, we demonstrated that coagulation factor (F)X directly binds adenovirus leading to liver infection. Here, we show that FX binds to the Ad5 hexon, not fiber, via an interaction between the FX Gla domain and hypervariable regions of the hexon surface. Binding occurs in multiple human adenovirus serotypes. Liver infection by the FX-Ad5 complex is mediated through a heparin-binding exosite in the FX serine protease domain. This study reveals an unanticipated function for hexon in mediating liver gene transfer in vivo.


Journal of Biological Chemistry | 2003

The C-terminal Domain of the Measles Virus Nucleoprotein Is Intrinsically Disordered and Folds upon Binding to the C-terminal Moiety of the Phosphoprotein

Sonia Longhi; Véronique Receveur-Bréchot; David Karlin; Kenth Johansson; Hervé Darbon; David Bhella; Robert P. Yeo; Stéphanie Finet; Bruno Canard

The nucleoprotein of measles virus consists of an N-terminal moiety, NCORE, resistant to proteolysis and a C-terminal moiety, NTAIL, hypersensitive to proteolysis and not visible as a distinct domain by electron microscopy. We report the bacterial expression, purification, and characterization of measles virus NTAIL. Using nuclear magnetic resonance, circular dichroism, gel filtration, dynamic light scattering, and small angle x-ray scattering, we show that NTAIL is not structured in solution. Its sequence and spectroscopic and hydrodynamic properties indicate that NTAIL belongs to the premolten globule subfamily within the class of intrinsically disordered proteins. The same epitopes are exposed in NTAIL and within the nucleoprotein, which rules out dramatic conformational changes in the isolated NTAILdomain compared with the full-length nucleoprotein. Most unstructured proteins undergo some degree of folding upon binding to their partners, a process termed “induced folding.” We show that NTAILis able to bind its physiological partner, the phosphoprotein, and that it undergoes such an unstructured-to-structured transition upon binding to the C-terminal moiety of the phosphoprotein. The presence of flexible regions at the surface of the viral nucleocapsid would enable plastic interactions with several partners, whereas the gain of structure arising from induced folding would lead to modulation of these interactions. These results contribute to the study of the emerging field of natively unfolded proteins.


Science | 2009

Crystal Structure of a Nucleocapsid-Like Nucleoprotein-RNA Complex of Respiratory Syncytial Virus

Rajiv G. Tawar; Stéphane Duquerroy; Clemens Vonrhein; Paloma F. Varela; Laurence Damier-Piolle; Nathalie Castagné; Kirsty MacLellan; Hugues Bedouelle; Gérard Bricogne; David Bhella; Jean-François Eléouët; Félix A. Rey

RSV in 3D Respiratory syncytial virus (RSV) causes pneumonia and bronchiolitis in infants. RSV is an RNA virus in which the genomic RNA forms part of a nuclease-resistant helical ribonucleoprotein complex. Tawar et al. (p. 1279) now use x-ray and electron microscopy data to model the structure of this nucleocapsid complex and show how it can template RNA synthesis. The crystal structure shows RNA wrapped around a decameric ring of nucleocapsid protein. Combining this structure with electron microscopy data gives a model that shows how polymerase might read out the RNA bases without disassembling the nucleocapsid helix. In negative-strand RNA viruses, viral RNA wraps around a nucleocapsid helix with the bases accessible to the viral polymerase. The respiratory syncytial virus (RSV) is an important human pathogen, yet neither a vaccine nor effective therapies are available to treat infection. To help elucidate the replication mechanism of this RNA virus, we determined the three-dimensional (3D) crystal structure at 3.3 Å resolution of a decameric, annular ribonucleoprotein complex of the RSV nucleoprotein (N) bound to RNA. This complex mimics one turn of the viral helical nucleocapsid complex, which serves as template for viral RNA synthesis. The RNA wraps around the protein ring, with seven nucleotides contacting each N subunit, alternating rows of four and three stacked bases that are exposed and buried within a protein groove, respectively. Combined with electron microscopy data, this structure provides a detailed model for the RSV nucleocapsid, in which the bases are accessible for readout by the viral polymerase. Furthermore, the nucleoprotein structure highlights possible key sites for drug targeting.


Blood | 2009

Identification of coagulation factor (F)X binding sites on the adenovirus serotype 5 hexon: effect of mutagenesis on FX interactions and gene transfer

Raul Alba; Angela C. Bradshaw; Alan L. Parker; David Bhella; Simon N. Waddington; Stuart A. Nicklin; Nico van Rooijen; Jerome Custers; Jaap Goudsmit; Dan H. Barouch; John H. McVey; Andrew H. Baker

Recent studies have demonstrated the importance of coagulation factor X (FX) in adenovirus (Ad) serotype 5-mediated liver transduction in vivo. FX binds to the adenovirus hexon hypervariable regions (HVRs). Here, we perform a systematic analysis of FX binding to Ad5 HVRs 5 and 7, identifying domains and amino acids critical for this interaction. We constructed a model of the Ad5-FX interaction using crystallographic and cryo-electron microscopic data to identify contact points. Exchanging Ad5 HVR5 or HVR7 from Ad5 to Ad26 (which does not bind FX) diminished FX binding as analyzed by surface plasmon resonance, gene delivery in vitro, and liver transduction in vivo. Exchanging Ad5-HVR5 for Ad26-HVR5 produced deficient virus maturation. Importantly, defined mutagenesis of just 2 amino acids in Ad5-HVR5 circumvented this and was sufficient to block liver gene transfer. In addition, mutation of 4 amino acids in Ad5-HVR7 or a single mutation at position 451 also blocked FX-mediated effects in vitro and in vivo. We therefore define the regions and amino acids on the Ad5 hexon that bind with high affinity to FX thereby better defining adenovirus infectivity pathways. These vectors may be useful for gene therapy applications where evasion of liver transduction is a prerequisite.


Molecular Cell | 2010

Synthesis of Empty Bacterial Microcompartments, Directed Organelle Protein Incorporation, and Evidence of Filament-Associated Organelle Movement

Joshua B. Parsons; Stefanie Frank; David Bhella; Mingzhi Liang; Michael B. Prentice; Daniel P. Mulvihill; Martin J. Warren

Compartmentalization is an important process, since it allows the segregation of metabolic activities and, in the era of synthetic biology, represents an important tool by which defined microenvironments can be created for specific metabolic functions. Indeed, some bacteria make specialized proteinaceous metabolic compartments called bacterial microcompartments (BMCs) or metabolosomes. Here we demonstrate that the shell of the metabolosome (representing an empty BMC) can be produced within E. coli cells by the coordinated expression of genes encoding structural proteins. A plethora of diverse structures can be generated by changing the expression profile of these genes, including the formation of large axial filaments that interfere with septation. Fusing GFP to PduC, PduD, or PduV, none of which are shell proteins, allows regiospecific targeting of the reporter group to the empty BMC. Live cell imaging provides unexpected evidence of filament-associated BMC movement within the cell in the presence of PduV.


Journal of General Virology | 2002

Significant differences in nucleocapsid morphology within the Paramyxoviridae.

David Bhella; Adam Ralph; Lindsay B. Murphy; Robert P. Yeo

Nucleocapsid (N) proteins from representative viruses of three genera within the Paramyxoviridae were expressed in insect cells using recombinant baculoviruses. RNA-containing structures, which appear morphologically identical to viral nucleocapsids, were isolated and subsequently imaged under a transmission electron microscope. Analysis of these images revealed marked differences in nucleocapsid morphology among the genera investigated, most notably between viruses of the Paramyxovirinae and the Pneumovirinae subfamilies. Helical pitch measurements were made, revealing that measles virus (MV, a Morbillivirus within the subfamily Paramyxovirinae) N protein produces helices that adopt multiple conformations with varying degrees of flexibility, while that of the Rubulavirus simian virus type 5 (SV5, subfamily Paramyxovirinae) produces more rigid structures with a less heterogeneous pitch distribution. Nucleocapsids produced by respiratory syncytial virus (RSV, subfamily Pneumovirinae) appear significantly narrower than those of MV and SV5 and have a longer pitch than the most extended form of MV. In addition to helical nucleocapsids, ring structures were also produced, image analysis of which has demonstrated that rings assembled from MV N protein consist of 13 subunits. This is consistent with previous reports that Sendai virus nucleocapsids have 13.07 subunits per turn. It was determined, however, that SV5 subnucleocapsid rings have 14 subunits, while rings derived from the radically different RSV nucleocapsid have been found to contain predominantly 10 subunits.


PLOS Pathogens | 2013

Extreme Genetic Fragility of the HIV-1 Capsid

Suzannah Rihn; Sam J. Wilson; Nicholas J. Loman; Mudathir Alim; Saskia E. Bakker; David Bhella; Robert J. Gifford; Frazer J. Rixon; Paul D. Bieniasz

Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies.


Journal of Virology | 2009

Paramyxovirus Ultrastructure and Genome Packaging: Cryo-Electron Tomography of Sendai Virus

Colin Loney; Geneviève Mottet-Osman; Laurent Roux; David Bhella

ABSTRACT Members of the Paramyxoviridae such as measles, mumps, and parainfluenza viruses have pleomorphic, enveloped virions that contain negative-sense unsegmented RNA genomes. This is encapsidated by multiple copies of a viral nucleocapsid protein N to form a helical ribonucleoprotein complex (termed the nucleocapsid), which acts as the template for both transcription and replication. Structure analysis of these viruses has proven challenging, owing to disordered regions in important constituent proteins, conformational flexibility in the nucleocapsid and the pleomorphic nature of virus particles. We conducted a low-resolution ultrastructural analysis of Sendai virus, a prototype paramyxovirus, using cryo-electron tomography. Virions are highly variable in size, ranging approximately from 110 to 540 nm in diameter. Envelope glycoproteins are densely packed on the virion surface, while nucleocapsids are clearly resolved in the virion interior. Subtomogram segmentation and filament tracing allowed us to define the path of many nucleocapsids and in some cases to determine the number of putative genomes within a single virus particle. Our findings indicate that these viruses may contain between one and six copies of their genome per virion and that there is no discernible order to nucleocapsid packaging.


Journal of Virology | 2008

Structural Insights into Calicivirus Attachment and Uncoating

David Bhella; Derek Gatherer; Yasmin Chaudhry; Rebecca Pink; Ian Goodfellow

ABSTRACT The Caliciviridae family comprises positive-sense RNA viruses of medical and veterinary significance. In humans, caliciviruses are a major cause of acute gastroenteritis, while in animals respiratory illness, conjunctivitis, stomatitis, and hemorrhagic disease are documented. Investigation of virus-host interactions is limited by a lack of culture systems for many viruses in this family. Feline calicivirus (FCV), a member of the Vesivirus genus, provides a tractable model, since it may be propagated in cell culture. Feline junctional adhesion molecule 1 (fJAM-1) was recently identified as a functional receptor for FCV. We have analyzed the structure of this virus-receptor complex by cryo-electron microscopy and three-dimensional image reconstruction, combined with fitting of homology modeled high-resolution coordinates. We show that domain 1 of fJAM-1 binds to the outer face of the P2 domain of the FCV capsid protein VP1, inducing conformational changes in the viral capsid. This study provides the first structural view of a native calicivirus-protein receptor complex and insights into the mechanisms of virus attachment and uncoating.


Journal of Biological Chemistry | 2003

Structure-Function Analysis of Recombinant Substrate Protein 22 kDa (SP-22) A MITOCHONDRIAL 2-CYS PEROXIREDOXIN ORGANIZED AS A DECAMERIC TOROID

Louise J. Gourlay; David Bhella; Sharon M. Kelly; Nicholas C. Price; J. Gordon Lindsay

Bovine mitochondrial SP-22 is a member of the peroxiredoxin family of peroxidases. It belongs to the peroxiredoxin 2-Cys subgroup containing three cysteines at positions 47, 66, and 168. The cloning and overexpression in Escherichia coli of recombinant wild type SP-22 and its three cysteine mutants (C47S, C66S, and C168S) are reported. Purified His-tagged SP-22 was fully active with Cys-47 being confirmed as the catalytic residue. The enzyme forms a stable decameric toroid consisting of five basic dimeric units containing intermolecular disulfide bonds linking the catalytically active Cys-47 of one subunit and Cys-168 of the adjacent monomer. The disulfide bonds are not required for overall structural integrity. The toroidal units have average external and internal diameters of 15 and 7 nm, respectively, and can form stacks in a lateral arrangement of two or three rings. C47S had a pronounced tendency to stack in long tubular structures containing up to 60 rings. Further unusual structural features are the presence of radial spikes projecting from the external surface and ordered electron-dense material within the central cavity of the toroid.

Collaboration


Dive into the David Bhella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca Pink

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jenny A. Greig

British Heart Foundation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge