Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian Goodfellow is active.

Publication


Featured researches published by Ian Goodfellow.


Journal of Virology | 2000

Identification of a cis-Acting Replication Element within the Poliovirus Coding Region

Ian Goodfellow; Yasmin Chaudhry; Andrew Richardson; Janet Meredith; Jeffrey W. Almond; Wendy S. Barclay; David J.A. Evans

ABSTRACT The replication of poliovirus, a positive-stranded RNA virus, requires translation of the infecting genome followed by virus-encoded VPg and 3D polymerase-primed synthesis of a negative-stranded template. RNA sequences involved in the latter process are poorly defined. Since many sequences involved in picornavirus replication form RNA structures, we searched the genome, other than the untranslated regions, for predicted local secondary structural elements and identified a 61-nucleotide (nt) stem-loop in the region encoding the 2C protein. Covariance analysis suggested the structure was well conserved in the Enterovirus genus of the Picornaviridae. Site-directed mutagenesis, disrupting the structure without affecting the 2C product, destroyed genome viability and suggested that the structure was required in the positive sense for function. Recovery of revertant viruses suggested that integrity of the structure was critical for function, and analysis of replication demonstrated that nonviable mutants did not synthesize negative strands. Our conclusion, that this RNA secondary structure constitutes a novel polioviruscis-acting replication element (CRE), is supported by the demonstration that subgenomic replicons bearing lethal mutations in the native structure can be restored to replication competence by the addition of a second copy of the 61-nt wild-type sequence at another location within the genome. This poliovirus CRE functionally resembles an element identified in rhinovirus type 14 (K. L. McKnight and S. M. Lemon, RNA 4:1569–1584, 1998) and the cardioviruses (P. E. Lobert, N. Escriou, J. Ruelle, and T. Michiels, Proc. Natl. Acad. Sci. USA 96:11560–11565, 1999) but differs in sequence, structure, and location. The functional role and evolutionary significance of CREs in the replication of positive-sense RNA viruses is discussed.


PLOS Pathogens | 2011

Norovirus Regulation of the Innate Immune Response and Apoptosis Occurs via the Product of the Alternative Open Reading Frame 4

Nora McFadden; Dalan Bailey; Guia Carrara; Alicia Benson; Yasmin Chaudhry; Amita Shortland; Jonathan L. Heeney; Felix Yarovinsky; Peter Simmonds; Andrew Macdonald; Ian Goodfellow

Small RNA viruses have evolved many mechanisms to increase the capacity of their short genomes. Here we describe the identification and characterization of a novel open reading frame (ORF4) encoded by the murine norovirus (MNV) subgenomic RNA, in an alternative reading frame overlapping the VP1 coding region. ORF4 is translated during virus infection and the resultant protein localizes predominantly to the mitochondria. Using reverse genetics we demonstrated that expression of ORF4 is not required for virus replication in tissue culture but its loss results in a fitness cost since viruses lacking the ability to express ORF4 restore expression upon repeated passage in tissue culture. Functional analysis indicated that the protein produced from ORF4 antagonizes the innate immune response to infection by delaying the upregulation of a number of cellular genes activated by the innate pathway, including IFN-Beta. Apoptosis in the RAW264.7 macrophage cell line was also increased during virus infection in the absence of ORF4 expression. In vivo analysis of the WT and mutant virus lacking the ability to express ORF4 demonstrated an important role for ORF4 expression in infection and virulence. STAT1-/- mice infected with a virus lacking the ability to express ORF4 showed a delay in the onset of clinical signs when compared to mice infected with WT virus. Quantitative PCR and histopathological analysis of samples from these infected mice demonstrated that infection with a virus not expressing ORF4 results in a delayed infection in this system. In light of these findings we propose the name virulence factor 1, VF1 for this protein. The identification of VF1 represents the first characterization of an alternative open reading frame protein for the calicivirus family. The immune regulatory function of the MNV VF1 protein provide important perspectives for future research into norovirus biology and pathogenesis.


Journal of Biological Chemistry | 2006

Caliciviruses Differ in Their Functional Requirements for eIF4F Components

Yasmin Chaudhry; Arabinda Nayak; Marie-Eve Bordeleau; Junichi Tanaka; Jerry Pelletier; Graham J. Belsham; Lisa O. Roberts; Ian Goodfellow

Two classes of viruses, namely members of the Potyviridae and Caliciviridae, use a novel mechanism for the initiation of protein synthesis that involves the interaction of translation initiation factors with a viral protein covalently linked to the viral RNA, known as VPg. The calicivirus VPg proteins can interact directly with the initiation factors eIF4E and eIF3. Translation initiation on feline calicivirus (FCV) RNA requires eIF4E because it is inhibited by recombinant 4E-BP1. However, to date, there have been no functional studies carried out with respect to norovirus translation initiation, because of a lack of a suitable source of VPg-linked viral RNA. We have now used the recently identified murine norovirus (MNV) as a model system for norovirus translation and have extended our previous studies with FCV RNA to examine the role of the other eIF4F components in translation initiation. We now demonstrate that, as with FCV, MNV VPg interacts directly with eIF4E, although, unlike FCV RNA, translation of MNV RNA is not sensitive to 4E-BP1, eIF4E depletion, or foot-and-mouth disease virus Lb protease-mediated cleavage of eIF4G. We also demonstrate that both FCV and MNV RNA translation require the RNA helicase component of the eIF4F complex, namely eIF4A, because translation was sensitive (albeit to different degrees) to a dominant negative form and to a small molecule inhibitor of eIF4A (hippuristanol). These results suggest that calicivirus RNAs differ with respect to their requirements for the components of the eIF4F translation initiation complex.


Cell Host & Microbe | 2014

Advances in Norovirus Biology

Stephanie M. Karst; Christiane E. Wobus; Ian Goodfellow; Kim Y. Green; Herbert W. Virgin

Human noroviruses are a major cause of epidemic and sporadic gastroenteritis worldwide and can chronically infect immunocompromised patients. Efforts to develop effective vaccines and antivirals have been hindered by the uncultivable nature and extreme genetic diversity of human noroviruses. Although they remain a particularly challenging pathogen to study, recent advances in norovirus animal models and in vitro cultivation systems have led to an increased understanding of norovirus molecular biology and replication, pathogenesis, cell tropism, and innate and adaptive immunity. Furthermore, clinical trials of vaccines consisting of nonreplicating virus-like particles have shown promise. In this review, we summarize these recent advances and discuss controversies in the field, which is rapidly progressing toward generation of antiviral agents and increasingly effective vaccines.


Journal of General Virology | 2014

Norovirus gene expression and replication.

Lucy Thorne; Ian Goodfellow

Noroviruses are small, positive-sense RNA viruses within the family Caliciviridae, and are now accepted widely as a major cause of acute gastroenteritis in both developed and developing countries. Despite their impact, our understanding of the life cycle of noroviruses has lagged behind that of other RNA viruses due to the inability to culture human noroviruses (HuNVs). Our knowledge of norovirus biology has improved significantly over the past decade as a result of numerous technological advances. The use of a HuNV replicon, improved biochemical and cell-based assays, combined with the discovery of a murine norovirus capable of replication in cell culture, has improved greatly our understanding of the molecular mechanisms of norovirus genome translation and replication, as well as the interaction with host cell processes. In this review, the current state of knowledge of the intracellular life of noroviruses is discussed with particular emphasis on the mechanisms of viral gene expression and viral genome replication.


Nucleic Acids Research | 2008

Bioinformatic and functional analysis of RNA secondary structure elements among different genera of human and animal caliciviruses.

Peter Simmonds; Ioannis Karakasiliotis; Dalan Bailey; Yasmin Chaudhry; David J. Evans; Ian Goodfellow

The mechanism and role of RNA structure elements in the replication and translation of Caliciviridae remains poorly understood. Several algorithmically independent methods were used to predict secondary structures within the Norovirus, Sapovirus, Vesivirus and Lagovirus genera. All showed profound suppression of synonymous site variability (SSSV) at genomic 5′ ends and the start of the sub-genomic (sg) transcript, consistent with evolutionary constraints from underlying RNA structure. A newly developed thermodynamic scanning method predicted RNA folding mapping precisely to regions of SSSV and at the genomic 3′ end. These regions contained several evolutionarily conserved RNA secondary structures, of variable size and positions. However, all caliciviruses contained 3′ terminal hairpins, and stem–loops in the anti-genomic strand invariably six bases upstream of the sg transcript, indicating putative roles as sg promoters. Using the murine norovirus (MNV) reverse-genetics system, disruption of 5′ end stem–loops produced ∼15- to 20-fold infectivity reductions, while disruption of the RNA structure in the sg promoter region and at the 3′ end entirely destroyed replication ability. Restoration of infectivity by repair mutations in the sg promoter region confirmed a functional role for the RNA secondary structure, not the sequence. This study provides comprehensive bioinformatic resources for future functional studies of MNV and other caliciviruses.


Clinical Infectious Diseases | 2016

Resurgence of Ebola virus disease in Guinea linked to a survivor with virus persistence in seminal fluid for more than 500 days

Boubacar Diallo; Daouda Sissoko; Nicholas J. Loman; Hadja Aïssatou Bah; Hawa Bah; Mary Claire Worrell; Lya Saidou Conde; Ramata Sacko; Samuel Mesfin; Angelo Loua; Jacques Katomba Kalonda; Ngozi A Erondu; Benjamin A. Dahl; Susann Handrick; Ian Goodfellow; Luke W. Meredith; Matt Cotten; Umaru Jah; Raoul Emeric Guetiya Wadoum; Pierre E. Rollin; N'Faly Magassouba; D. Malvy; Xavier Anglaret; Miles W. Carroll; Raymond Bruce Aylward; Mamoudou H. Djingarey; Abdoulaye Diarra; Pierre Formenty; Sakoba Keita; Stephan Günther

We report on an Ebola virus disease (EVD) survivor who showed Ebola virus in seminal fluid 531 days after onset of disease. The persisting virus was sexually transmitted in February 2016, about 470 days after onset of symptoms, and caused a new cluster of EVD in Guinea and Liberia.


The EMBO Journal | 2007

Structural insights into the transcriptional and translational roles of Ebp1

Tom P. Monie; Andrew J Perrin; James R. Birtley; Trevor R. Sweeney; Ioannis Karakasiliotis; Yasmin Chaudhry; Lisa O. Roberts; Stephen Matthews; Ian Goodfellow; Stephen Curry

The ErbB3‐binding protein 1 (Ebp1) is an important regulator of transcription, affecting eukaryotic cell growth, proliferation, differentiation and survival. Ebp1 can also affect translation and cooperates with the polypyrimidine tract‐binding protein (PTB) to stimulate the activity of the internal ribosome entry site (IRES) of foot‐and‐mouth disease virus (FMDV). We report here the crystal structure of murine Ebp1 (p48 isoform), providing the first glimpse of the architecture of this versatile regulator. The structure reveals a core domain that is homologous to methionine aminopeptidases, coupled to a C‐terminal extension that contains important motifs for binding proteins and RNA. It sheds new light on the conformational differences between the p42 and p48 isoforms of Ebp1, the disposition of the key protein‐interacting motif (354LKALL358) and the RNA‐binding activity of Ebp1. We show that the primary RNA‐binding site is formed by a Lys‐rich motif in the C terminus and mediates the interaction with the FMDV IRES. We also demonstrate a specific functional requirement for Ebp1 in FMDV IRES‐directed translation that is independent of a direct interaction with PTB.


PLOS Medicine | 2016

Experimental Treatment of Ebola Virus Disease with TKM-130803: A Single-Arm Phase 2 Clinical Trial

Jake Dunning; Foday Sahr; Amanda Rojek; Fiona Gannon; Gail Carson; Baimba Idriss; Thomas Massaquoi; Regina Gandi; Sebatu Joseph; Hassan K. Osman; Timothy J G Brooks; Andrew J. H. Simpson; Ian Goodfellow; Lucy Thorne; Armando Arias; Laura Merson; Lyndsey Castle; Rebecca Howell-Jones; Raul Pardinaz-Solis; Benjamin Hope-Gill; Mauricio Ferri; Jennifer Grove; Mark Kowalski; Kasia Stepniewska; Trudie Lang; John Whitehead; Piero Olliaro; Mohammed Samai; Peter Horby

Background TKM-130803, a small interfering RNA lipid nanoparticle product, has been developed for the treatment of Ebola virus disease (EVD), but its efficacy and safety in humans has not been evaluated. Methods and Findings In this single-arm phase 2 trial, adults with laboratory-confirmed EVD received 0.3 mg/kg of TKM-130803 by intravenous infusion once daily for up to 7 d. On days when trial enrolment capacity was reached, patients were enrolled into a concurrent observational cohort. The primary outcome was survival to day 14 after admission, excluding patients who died within 48 h of admission. After 14 adults with EVD had received TKM-130803, the pre-specified futility boundary was reached, indicating a probability of survival to day 14 of ≤0.55, and enrolment was stopped. Pre-treatment geometric mean Ebola virus load in the 14 TKM-130803 recipients was 2.24 × 109 RNA copies/ml plasma (95% CI 7.52 × 108, 6.66 × 109). Two of the TKM-130803 recipients died within 48 h of admission and were therefore excluded from the primary outcome analysis. Of the remaining 12 TKM-130803 recipients, nine died and three survived. The probability that a TKM-130803 recipient who survived for 48 h will subsequently survive to day 14 was estimated to be 0.27 (95% CI 0.06, 0.58). TKM-130803 infusions were well tolerated, with 56 doses administered and only one possible infusion-related reaction observed. Three patients were enrolled in the observational cohort, of whom two died. Conclusions Administration of TKM-130803 at a dose of 0.3 mg/kg/d by intravenous infusion to adult patients with severe EVD was not shown to improve survival when compared to historic controls. Trial registration Pan African Clinical Trials Registry PACTR201501000997429


Journal of Virology | 2005

Factors Required for the Uridylylation of the Foot-and-Mouth Disease Virus 3B1, 3B2, and 3B3 Peptides by the RNA-Dependent RNA Polymerase (3Dpol) In Vitro

Arabinda Nayak; Ian Goodfellow; Graham J. Belsham

ABSTRACT The 5′ terminus of picornavirus genomic RNA is covalently linked to the virus-encoded peptide 3B (VPg). Foot-and-mouth disease virus (FMDV) is unique in encoding and using 3 distinct forms of this peptide. These peptides each act as primers for RNA synthesis by the virus-encoded RNA polymerase 3Dpol. To act as the primer for positive-strand RNA synthesis, the 3B peptides have to be uridylylated to form VPgpU(pU). For certain picornaviruses, it has been shown that this reaction is achieved by the 3Dpol in the presence of the 3CD precursor plus an internal RNA sequence termed a cis-acting replication element (cre). The FMDV cre has been identified previously to be within the 5′ untranslated region, whereas all other picornavirus cre structures are within the viral coding region. The requirements for the in vitro uridylylation of each of the FMDV 3B peptides has now been determined, and the role of the FMDV cre (also known as the 3B-uridylylation site, or bus) in this reaction has been analyzed. The poly(A) tail does not act as a significant template for FMDV 3B uridylylation.

Collaboration


Dive into the Ian Goodfellow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dalan Bailey

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Lucy Thorne

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Caddy

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Armando Arias

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Myra Hosmillo

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Jia Lu

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge