David Brent Mott
Goddard Space Flight Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Brent Mott.
SPIE's International Symposium on Optical Science, Engineering, and Instrumentation | 1999
Richard L. Kelley; Michael Damian Audley; Susan Breon; Ryuichi Fujimoto; Keith C. Gendreau; Stephen S. Holt; Yoshitaka Ishisaki; Dan McCammon; Tatehiro Mihara; Kazuhisa Mitsuda; S. H. Moseley; David Brent Mott; F. S. Porter; C. K. Stahle; A. E. Szymkowiak
The Astro-E High Resolution X-ray Spectrometer (XRS) was developed jointly by the NASA/Goddard Space Flight Center and the Institute of Space and Astronomical Science in Japan. The instrument is based on a new approach to spectroscopy, the x-ray microcalorimeter. This device senses the energies of individual x-ray photons as heat with extreme precision. A 32 channel array of microcalorimeters is being employed, each with an energy resolution of about 12 eV at 6 keV. This will provide spectral resolving power 10 times higher than any other non-dispersive x-ray spectrometer. The instrument incorporates a three stage cooling system capable of operating the array at 60 mK for about two years in orbit. The array sits at the focus of a grazing incidence conical mirror. The quantum efficiency of the microcalorimeters and the reflectivity of the x-ray mirror system combine to give high throughput over the 0.3- 12 keV energy band. This new capability will enable the study of a wide range of high-energy astrophysical sources with unprecedented spectral sensitivity. This paper presents the basic design requirements and implementation of the XRS, and also describes the instrument parameters and performance.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2000
N Tralshawala; Shahid Aslam; Regis P. Brekosky; T. C. Chen; E Figueroa Feliciano; F.M Finkbeiner; M.J Li; David Brent Mott; C. K. Stahle; Carl Michael Stahle
Abstract We report on progress made so far at NASA Goddard Space Flight Center towards the development of arrays of X-ray microcalorimeters as candidates for the high-resolution X-ray spectrometer on the Constellation-X mission. In the design concept presently under consideration, the microcalorimeter consists of (i) a Bi/Cu multilayer absorber for stopping and thermalizing the incident X-rays, (ii) an e-beam evaporated Mo/Au proximity bilayer with sputtered Nb leads for sensing the resultant temperature rise, and (iii) a silicon nitride membrane to provide a weak thermal link to the sink temperature so that the calorimeter can return to its equilibrium temperature. Fabrication details and preliminary results are reported.
Physica Status Solidi B-basic Solid State Physics | 2002
Dan McCammon; M. Galeazzi; D. Liu; Wilton T. Sanders; B. Smith; P. Tan; Regis P. Brekosky; John D. Gygax; Richard L. Kelley; David Brent Mott; F. S. Porter; C. K. Stahle; Carl Michael Stahle; A. E. Szymkowiak
In the course of developing microcalorimeters as detectors for astronomical X-ray spectroscopy, we have undertaken an empirical characterization of non-ideal effects in the doped semiconductor thermometers used with these detectors, which operate at temperatures near 50 mK. We have found three apparently independent categories of such behavior that are apparently intrinsic properties of the variable-range hopping conduction mechanism in these devices: 1/f fluctuations in the resistance, which seems to be a 2D effect; a departure from the ideal coulomb-gap temperature dependence of the resistance at temperatures below T 0 /24; and an electrical nonlinearity that has the time dependence and extra noise that are quantitatively predicted by a simple hot electron model. This work has been done largely with ion-implanted Si:P:B, but similar behaviors have been observed in transmutation doped germanium.
Proceedings of SPIE | 2001
David Brent Mott; Shahid Aslam; Kenneth A. Blumenstock; Rainer K. Fettig; David E. Franz; Alexander S. Kutyrev; Mary J. Li; Carlos J. Monroy; S. H. Moseley; David S. Schwinger
Two-dimensional microshutter arrays are being developed at NASA Goddard Space Flight Center (GSFC) for the Next Generation Space Telescope (NGST) for use in the near-infrared region. Functioning as focal plane object selection devices, the microshutter arrays are 2-D programmable masks with high efficiency and high contrast. The NGST environment requires cryogenic operation at 45 K. Arrays are close-packed silicon nitride membranes with a unit cell size of 100x100 micrometer. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with minimized mechanical stress concentration. The mechanical shutter arrays are fabricated with MEMS technologies. The processing includes a RIE front-etch to form shutters out of the nitride membrane, an anisotropic back-etch for wafer thinning, and a deep RIE (DRIE) back-etch down to the nitride shutter membrane to form frames and to relieve the shutters from the silicon substrate. A layer of magnetic material is deposited onto each shutter. Onto the side-wall of the support structure a metal layer is deposited that acts as a vertical hold electrode. Shutters are rotated into the support structure by means of an external magnet that is swept across the shutter array for opening. Addressing is performed through a scheme using row and column address lines on each chip and external addressing electronics.
MEMS design, fabrication, characterization, and packaging. Conference | 2001
Mary J. Li; I. S. Aslam; Audrey J. Ewin; Rainer K. Fettig; David E. Franz; Carl A. Kotecki; Alexander S. Kutyrev; S. H. Moseley; Carlos J. Monroy; David Brent Mott; Yun Zheng
Two-dimensional microshutter arrays are being developed at NASA Goddard Space Flight Center for the Next Generation Space Telescope (NGST) for use in the near-infrared region. Functioning as object selection devices, the microshutter arrays are designed for the transmission of light with high efficiency and high contrast. The NGST environment requires cryogenic operation at 45K. Arrays are close-packed silicon nitride membranes with a pixel size of 100 X 100 micrometers . Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. The mechanical shutter arrays are fabricated with MEMS technologies. The processing includes a RIE front-etch to form shutters out of the nitride membrane, an anisotropic back-etch for wafer thinning, and a deep RIE (DRIE) back-etch down to the nitride shutter membrane to form frames and to relieve shutters from the silicon substrate. Two approaches for shutter actuation have been developed. Shutters are actuated using either a combined mechanical and electrostatic force or a combined magnetic and electrostatic force. A CMOS circuit embedded in the frame between shutters allows programmable shutter selection for the first approach. A control of row and column electrodes fulfills shutter selection for the second approach.
SPIE's International Symposium on Optical Science, Engineering, and Instrumentation | 1999
Caroline A. Kilbourne; Michael Damian Audley; Regis P. Brekosky; Ryuichi Fujimoto; Keith C. Gendreau; John D. Gygax; Yoshitaka Ishisaki; Richard L. Kelley; R.A. McClanahan; Tatehiro Mihara; Kazuhisa Mitsuda; S. H. Moseley; David Brent Mott; F. S. Porter; Carl Michael Stahle; A. E. Szymkowiak
The XRS instrument has an array of 32 micro-calorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of 9 eV at 3 keV and 11 eV at 6 keV. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, operating temperature, thermistor size, absorber choice, and means of attaching the absorber to the thermistor bearing element. We will present representative performance data, though a more detailed presentation of the results of the instrument calibration is presented elsewhere in these proceedings. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance in conjunction with the array.
Proceedings of SPIE | 2003
Mary J. Li; Alex Bier; Rainer K. Fettig; David E. Franz; Ron Hu; Todd King; Alexander S. Kutyrev; Bernard A. Lynch; S. H. Moseley; David Brent Mott; David A. Rapchun; R. F. Silverberg; Wayne Smith; Liqin Wang; Yun Zheng; C. Zinke
Magnetically actuated MEMS microshutter arrays are being developed at the NASA Goddard Space Flight Center for use in a multi-object spectrometer on the James Webb Space Telescope (JWST), formerly Next Generation Space Telescope (NGST). The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast. The JWST environment requires cryogenic operation at 45K. Microshutter arrays are fabricated out of silicon-on-insulator (SOI) wafers. Arrays consist of close-packed shutters made on silicon nitride (nitride) membranes with a pixel size of 100 × 100 m. Individual shutters are patterned with a torsion flexure permitting shutters to open 90°, with a minimized mechanical stress concentration. Shutters operated this way have survived fatigue life test. The mechanical shutter arrays are fabricated using MEMS technologies. The processing includes a multi-layer metal deposition, patterning of shutter electrodes and magnetic pads, reactive ion etching (RIE) of the front side to form shutters in a nitride film, an anisotropic back-etch for wafer thinning, and a deep RIE (DRIE) back-etch, down to the nitride shutter layer, to form support frames and relieve shutters from the silicon substrate. An additional metal deposition and patterning has recently been developed to form electrodes on the vertical walls of the frame. Shutters are actuated using a magnetic force, and latched electrostatically. One-dimensional addressing has been demonstrated.
LOW TEMPERATURE DETECTORS: Ninth International Workshop on Low Temperature Detectors | 2002
D. Liu; M. Galeazzi; Dan McCammon; Wilton T. Sanders; B. Smith; P. Tan; Regis P. Brekosky; John D. Gygax; R. L. Kelley; David Brent Mott; F. S. Porter; C. K. Stahle; Carl Michael Stahle; A. E. Szymkowiak
Non-ohmic behavior of doped silicon and germanium can be empirically explained using a hot-electron model, which is motivated by the hot-electron effect in metals at low temperatures. This model assumes that the thermal coupling between electrons and lattice at low temperatures is weaker than the coupling between electrons, so that the electric power applied to the electrons raises them to a higher temperature than the lattice. Although this model seems not suitable for semiconductors in the variable range-hopping regime, where the electrons are localized, it fits quite well the experimental data. To determine whether the hot-electron model in doped semiconductor is just an alternative way to parameterize the data or has some physical validity, we investigated the noise and the frequency-dependence of the impedance of doped silicon thermistors that are used for low temperature thermal X-ray detectors. The measured excess white noise at low frequencies is consistent with the predicted thermodynamic fluctua...
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2000
C. K. Stahle; F.M Finkbeiner; T. C. Chen; E Figueroa Feliciano; John D. Gygax; R. L. Kelley; M.J Li; B.J Mattson; David Brent Mott; F. S. Porter; Carl Michael Stahle; A. E. Szymkowiak; N Tralshawala
Abstract Superconducting bilayers made of thin films of molybdenum and gold show promise as robust transition-edge sensor (TES) thermometers for calorimeters. We present our first X-ray results from experiments with Mo/Au TES calorimeters on silicon-nitride membranes. These results include analysis of the signal pulse shape and noise as functions of the bias point, which is varied through changing the bias voltage for operation at different places within the superconducting transition and changing the heat sink temperature relative to the transition temperature. Ultimately, we determined that the performance of our devices is limited by the slew rate of the SQUID amplifier used to measure the change in current, which restricts the choice of bias. The amplifier must be replaced before further device characterization and optimization can proceed.
SPIE's International Symposium on Optical Science, Engineering, and Instrumentation | 1999
Ted Z. C. Huang; David Brent Mott; Anh T. La
We have successfully developed a prototype 256 X 256 photoconductive GaN ultraviolet (UV) imaging array. The array, with its pixels (30 X 30 micrometer2) indium bump bonded to a Lockheed Martin Fairchild Systems LT9601 readout integrated circuit, is highly sensitive to ultraviolet light below 365 nm with a sharp reduction in response to visible and infrared light. The array was installed into a custom designed UV camera utilizing a Nikon UV lens with all the off-chip electronics interfaced to an automatic computer controlled system. To the best of our knowledge, this is the first reported UV array camera based on the nitride materials.