Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Butman is active.

Publication


Featured researches published by David Butman.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting

David Butman; Sarah M. Stackpoole; Edward G. Stets; Cory P. McDonald; David W. Clow; Robert G. Striegl

Significance Inland waters provide habitat for aquatic organisms; are sources of human drinking water; and integrate, transport, and process carbon across continents. Estimates of the accumulation of carbon in terrestrial environments suggest that agricultural and forest ecosystems have annual net gains in carbon storage. These ecosystems are considered sinks of atmospheric carbon dioxide. None of these estimates have considered the loss of carbon to and also through aquatic environments at the national or continental scale. We show that aquatic ecosystems in the conterminous United States export over 100 teragrams of carbon (TgC) per year, highlighting the need to attribute the sources of aquatic carbon more accurately, and assert that inland waters play an important role in carbon accounting. Inland water ecosystems dynamically process, transport, and sequester carbon. However, the transport of carbon through aquatic environments has not been quantitatively integrated in the context of terrestrial ecosystems. Here, we present the first integrated assessment, to our knowledge, of freshwater carbon fluxes for the conterminous United States, where 106 (range: 71–149) teragrams of carbon per year (TgC⋅y−1) is exported downstream or emitted to the atmosphere and sedimentation stores 21 (range: 9–65) TgC⋅y−1 in lakes and reservoirs. We show that there is significant regional variation in aquatic carbon flux, but verify that emission across stream and river surfaces represents the dominant flux at 69 (range: 36–110) TgC⋅y−1 or 65% of the total aquatic carbon flux for the conterminous United States. Comparing our results with the output of a suite of terrestrial biosphere models (TBMs), we suggest that within the current modeling framework, calculations of net ecosystem production (NEP) defined as terrestrial only may be overestimated by as much as 27%. However, the internal production and mineralization of carbon in freshwaters remain to be quantified and would reduce the effect of including aquatic carbon fluxes within calculations of terrestrial NEP. Reconciliation of carbon mass–flux interactions between terrestrial and aquatic carbon sources and sinks will require significant additional research and modeling capacity.


Ecology Letters | 2016

Freshwater biota and rising pCO2

Caleb T. Hasler; David Butman; Jennifer D. Jeffrey; Cory D. Suski

Rising atmospheric carbon dioxide (CO2) has caused a suite of environmental issues, however, little is known about how the partial pressure of CO2 (pCO2) in freshwater will be affected by climate change. Freshwater pCO2 varies across systems and is controlled by a diverse array of factors, making it difficult to make predictions about future levels of pCO2. Recent evidence suggests that increasing levels of atmospheric CO2 may directly increase freshwater pCO2 levels in lakes, but rising atmospheric CO2 may also indirectly impact freshwater pCO2 levels in a variety of systems by affecting other contributing factors such as soil respiration, terrestrial productivity and climate regimes. Although future freshwater pCO2 levels remain uncertain, studies have considered the potential impacts of changes to pCO2 levels on freshwater biota. Studies to date have focused on impacts of elevated pCO2 on plankton and macrophytes, and have shown that phytoplankton nutritional quality is reduced, plankton community structure is altered, photosynthesis rates increase and macrophyte distribution shifts with increasing pCO2. However, a number of key knowledge gaps remain and gaining a better understanding of how freshwater pCO2 levels are regulated and how these levels may impact biota, will be important for predicting future responses to climate change.


Geophysical Research Letters | 2015

Long‐term anoxia and release of ancient, labile carbon upon thaw of Pleistocene permafrost

Stephanie A. Ewing; Jonathan A. O'Donnell; George R. Aiken; Kenna D. Butler; David Butman; Lisamarie Windham-Myers; Mikhail Kanevskiy

USGS through the Climate and Land Use Change Mission Area and the NRC postdoc program; Montana State University Vice President of Research and College of Agriculture; the Montana Agricultural Experiment Station; National Science Foundation (EAR 0630257)


Global Biogeochemical Cycles | 2017

Carbonate buffering and metabolic controls on carbon dioxide in rivers

Edward G. Stets; David Butman; Cory P. McDonald; Sarah M. Stackpoole; Michael D. DeGrandpre; Robert G. Striegl

Multiple processes support the significant efflux of carbon dioxide (CO2) from rivers and streams. Attribution of CO2 oversaturation will lead to better quantification of the freshwater carbon cycle and provide insights into the net cycling of nutrients and pollutants. CO2 production is closely related to O2 consumption because of the metabolic linkage of these gases. However, this relationship can be weakened due to dissolved inorganic carbon inputs from groundwater, carbonate buffering, calcification, and anaerobic metabolism. CO2 and O2 concentrations and other water quality parameters were analyzed in two data sets: a synoptic field study and nationwide water quality monitoring data. CO2 and O2 concentrations were strongly negatively correlated in both data sets (ρ = −0.67 and ρ = −0.63, respectively), although the correlations were weaker in high-alkalinity environments. In nearly all samples, the molar oversaturation of CO2 was a larger magnitude than molar O2 undersaturation. We used a dynamically coupled O2CO2 model to show that lags in CO2 air-water equilibration are a likely cause of this phenomenon. Lags in CO2 equilibration also impart landscape-scale differences in the behavior of CO2 between high- and low-alkalinity watersheds. Although the concept of carbonate buffering and how it creates lags in CO2 equilibration with the atmosphere is well understood, it has not been sufficiently integrated into our understanding of CO2 dynamics in freshwaters. We argue that the consideration of carbonate equilibria and its effects on CO2 dynamics are primary steps in understanding the sources and magnitude of CO2 oversaturation in rivers and streams.


Nature Communications | 2018

Similarity of stream width distributions across headwater systems

George H. Allen; Tamlin M. Pavelsky; Eric A. Barefoot; Michael P. Lamb; David Butman; Arik Tashie; Colin J. Gleason

The morphology and abundance of streams control the rates of hydraulic and biogeochemical exchange between streams, groundwater, and the atmosphere. In large river systems, the relationship between river width and abundance is fractal, such that narrow rivers are proportionally more common than wider rivers. However, in headwater systems, where many biogeochemical reactions are most rapid, the relationship between stream width and abundance is unknown. To constrain this uncertainty, we surveyed stream hydromorphology (wetted width and length) in several headwater stream networks across North America and New Zealand. Here, we find a strikingly consistent lognormal statistical distribution of stream width, including a characteristic most abundant stream width of 32 ± 7 cm independent of discharge or physiographic conditions. We propose a hydromorphic model that can be used to more accurately estimate the hydromorphology of streams, with significant impact on the understanding of the hydraulic, ecological, and biogeochemical functions of stream networks.The morphology and abundance of streams control the rates of hydraulic and biogeochemical exchange between streams, groundwater and the atmosphere. Here, the authors show that stream hydromorphology is predictable within headwater catchments with implications for stream-atmosphere gas exchange estimates.


Global Biogeochemical Cycles | 2018

Carbon Budget of Tidal Wetlands, Estuaries, and Shelf Waters of Eastern North America

Raymond G. Najjar; Maria Herrmann; Richard B. Alexander; Elizabeth W. Boyer; David J. Burdige; David Butman; Wei-Jun Cai; E.A. Canuel; R. F. Chen; Marjorie A. M. Friedrichs; R.A. Feagin; Peter Griffith; A. L. Hinson; James R. Holmquist; Xinping Hu; W.M. Kemp; Kevin D. Kroeger; Antonio Mannino; S.L. Mccallister; Wade R. McGillis; M. R. Mulholland; Cynthia H. Pilskaln; Joseph E. Salisbury; Sergio R. Signorini; P. St-Laurent; Hanqin Tian; M. Tzortziou; Penny Vlahos; Zhaohui Aleck Wang; Richard C. Zimmerman

Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here, we construct such a budget for Eastern North America using historical data, empirical models, remote-sensing algorithms, and process-based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they respectively make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.


Nature Climate Change | 2018

No blast from the past

Matthew J. Bogard; David Butman

Thawing of Arctic soils liberates ancient organic carbon and can facilitate massive greenhouse gas emissions from adjacent aquatic ecosystems. Research now shows that Arctic lakes are generally not releasing very much ancient carbon to the atmosphere.


Journal of Geophysical Research | 2017

The experimental flow to the Colorado River delta: Effects on carbon mobilization in a dry watercourse

Thomas S. Bianchi; David Butman; Peter A. Raymond; Nicholas D. Ward; Rory J. S. Kates; Karl W. Flessa; Hector Zamora; Ana R. Arellano; Jorge Ramirez; Eliana Rodriguez

Here we report on the effects of an experimental flood on the carbon cycling dynamics in the dry watercourse of the Colorado River in Mexico. We observed post-flood differences in the degree of decay, age, and concentration of dissolved organic carbon (DOC), as well as dissolved CH4 and CO2 concentrations throughout the study site. Our results indicate that this flooded waterway was a limited source of CH4 and CO2 to the atmosphere during the event and that DOC age increased with time of flooding. Based on our findings, we suggest that the interplay between storage and mobilization of carbon and greenhouse gases in arid and semi-arid regions is potentially sensitive to changing climate conditions, particularly hydrologic variability. Changes in the radiocarbon age of DOC throughout the flooding event suggest that organic matter (OM) that had been stored for long periods (e.g., millennial) was mobilized by the flooding event along with CO2. The OM residing in the dry riverbed that was mobilized into floodwaters had a signature reflective of degraded vascular plant OM and microbial biomass. Whether this microbial OM was living or dead, our findings support previous work in soils and natural waters showing that microbial OM can remain stable and stored in ecosystems for long time periods. As human appropriation of water resources continues to increase, the episodic drying and rewetting of once natural riverbeds and deltas may fundamentally alter the processing and storage of carbon in such systems.


Inland Waters | 2017

Spatial variability of CO2 concentrations and biogeochemistry in the Lower Columbia River

John T. Crawford; David Butman; Luke C. Loken; Philipp Stadler; Catherine Kuhn; Robert G. Striegl

Abstract Carbon dioxide (CO2) emissions from rivers and other inland waters are thought to be a major component of regional and global carbon cycling. In large managed rivers such as the Columbia River, contemporary ecosystem changes such as damming, nutrient enrichment, and increased water residence times may lead to reduced CO2 concentrations (and emissions) due to increased primary production, as has been shown in another large North American river (Upper Mississippi). In this work, spatial patterns of water quality, including dissolved CO2 concentrations, were assessed in the Lower Columbia River (LCR) and major tributaries using underway measurements from a small research vessel during July 2016. We observed near-equilibrium CO2 conditions and overall weak supersaturation of CO2 in the main channel (average 133.8% saturation) and tributaries. We observed only weak correlations between CO2 saturation, chlorophyll a fluorescence, and turbidity, thus not strongly supporting our hypothesis of primary productivity controls. In general, the LCR was clear (low turbidity, mean = 1.48 FNU) and had low chlorophyll fluorescence (mean = 0.177 RFU) during the sampling period. As a whole, the LCR was homogeneous with respect to biogeochemical conditions and showed low spatial variability at >100 km scales. Overall, we find that the LCR is likely a weak summertime source of CO2 to the atmosphere, in line with findings from other altered rivers such as the Upper Mississippi.


Ecological Applications | 2017

Inland waters and their role in the carbon cycle of Alaska

Sarah M. Stackpoole; David Butman; David W. Clow; Kristine L. Verdin; Benjamin V. Gaglioti; Hélène Genet; Robert G. Striegl

Collaboration


Dive into the David Butman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

George R. Aiken

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah M. Stackpoole

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward G. Stets

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Mannino

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Catherine Kuhn

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge