Edward G. Stets
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edward G. Stets.
Aquatic Ecosystem Health & Management | 2004
James B. Cotner; Bopaiah A. Biddanda; Wataru Makino; Edward G. Stets
We examined the organic carbon budget for the Earths largest lake, Lake Superior, in the Laurentian Great Lakes. This is a unique, ultra-oligotrophic system with many features similar to the oligotrophic oceanic gyres, such as dominance of microbial biomass and dissolved organic carbon in biogeochemical processes. Photo-autotrophy is the dominant source of reduced organic matter in the lake. Areal rates of primary production are among the lowest measured in any aquatic system, and are likely a result of cold water temperatures and low nutrient concentrations in the lake. Allochthonous riverine organic carbon inputs were estimated at about 10 percent of photo-autotrophic production. Atmospheric carbon deposition has not been measured to any significant extent but we estimate it at 0.16 to 0.41 Tg yr−1 . All together, allochthonous carbon sources provide 13 to 19 percent of photo-autotrophic production. The main loss of organic matter in the lake is through respiration in the water column. Respiration is double all estimated organic carbon sources combined and therefore sources are likely underestimated. Few measurements of photo-autotrophic carbon production have been made and none recently. Nonetheless, most of the production and fluxes in this system pass through the large dissolved organic carbon pool (more than 10 times as large as the particulate organic carbon pool), which is mediated by heterotrophic and autotrophic picoplanktonic microbial flora. Improved understanding of dissolved organic carbon pools and dynamics is critical for constraining carbon flux in ultra-oligotrophic Lake Superior.
Proceedings of the National Academy of Sciences of the United States of America | 2016
David Butman; Sarah M. Stackpoole; Edward G. Stets; Cory P. McDonald; David W. Clow; Robert G. Striegl
Significance Inland waters provide habitat for aquatic organisms; are sources of human drinking water; and integrate, transport, and process carbon across continents. Estimates of the accumulation of carbon in terrestrial environments suggest that agricultural and forest ecosystems have annual net gains in carbon storage. These ecosystems are considered sinks of atmospheric carbon dioxide. None of these estimates have considered the loss of carbon to and also through aquatic environments at the national or continental scale. We show that aquatic ecosystems in the conterminous United States export over 100 teragrams of carbon (TgC) per year, highlighting the need to attribute the sources of aquatic carbon more accurately, and assert that inland waters play an important role in carbon accounting. Inland water ecosystems dynamically process, transport, and sequester carbon. However, the transport of carbon through aquatic environments has not been quantitatively integrated in the context of terrestrial ecosystems. Here, we present the first integrated assessment, to our knowledge, of freshwater carbon fluxes for the conterminous United States, where 106 (range: 71–149) teragrams of carbon per year (TgC⋅y−1) is exported downstream or emitted to the atmosphere and sedimentation stores 21 (range: 9–65) TgC⋅y−1 in lakes and reservoirs. We show that there is significant regional variation in aquatic carbon flux, but verify that emission across stream and river surfaces represents the dominant flux at 69 (range: 36–110) TgC⋅y−1 or 65% of the total aquatic carbon flux for the conterminous United States. Comparing our results with the output of a suite of terrestrial biosphere models (TBMs), we suggest that within the current modeling framework, calculations of net ecosystem production (NEP) defined as terrestrial only may be overestimated by as much as 27%. However, the internal production and mineralization of carbon in freshwaters remain to be quantified and would reduce the effect of including aquatic carbon fluxes within calculations of terrestrial NEP. Reconciliation of carbon mass–flux interactions between terrestrial and aquatic carbon sources and sinks will require significant additional research and modeling capacity.
Inland Waters | 2012
Edward G. Stets; Robert G. Striegl
Abstract Material exports by rivers, particularly carbon exports, provide insight to basin geology, weathering, and ecological processes within the basin. Accurate accounting of those exports is valuable to understanding present, past, and projected basin-wide changes in those processes. We calculated lateral export of inorganic and organic carbon (IC and OC) from rivers draining the conterminous United States using stream gaging and water quality data from more than 100 rivers. Approximately 90% of land area and 80% of water export were included, which enabled a continental-scale estimate using minor extrapolation. Total carbon export was 41–49 Tg C yr−1. IC was >75% of export and exceeded OC export in every region except the southeastern Atlantic seaboard. The 10 largest rivers, by discharge, accounted for 66% of water export and carried 74 and 62% of IC and OC export, respectively. Watershed carbon yield for the conterminous United States was 4.2 and 1.3 g C m−2 yr−1 for IC and OC, respectively. The dominance of IC export was unexpected but is consistent with geologic models suggesting high weathering rates in the continental United States due to the prevalence of easily weathered sedimentary rock.
Science of The Total Environment | 2014
Edward G. Stets; Valerie J. Kelly; Charles G. Crawford
Alkalinity increases in large rivers of the conterminous US are well known, but less is understood about the processes leading to these trends as compared with headwater systems more intensively examined in conjunction with acid deposition studies. Nevertheless, large rivers are important conduits of inorganic carbon and other solutes to coastal areas and may have substantial influence on coastal calcium carbonate saturation dynamics. We examined long-term (mid-20th to early 21st century) trends in alkalinity and other weathering products in 23 rivers of the conterminous US. We used a rigorous flow-weighting technique which allowed greater focus on solute trends occurring independently of changes in flow. Increasing alkalinity concentrations and yield were widespread, occurring at 14 and 13 stations, respectively. Analysis of trends in other weathering products suggested that the causes of alkalinity trends were diverse, but at many stations alkalinity increases coincided with decreasing nitrate+sulfate and decreasing cation:alkalinity ratios, which is consistent with recovery from acidification. A positive correlation between the Sen-Thiel slopes of alkalinity increases and agricultural lime usage indicated that agricultural lime contributed to increasing solute concentration in some areas. However, several stations including the Altamaha, Upper Mississippi, and San Joaquin Rivers exhibited solute trends, such as increasing cation:alkalinity ratios and increasing nitrate+sulfate, more consistent with increasing acidity, emphasizing that multiple processes affect alkalinity trends in large rivers. This study was unique in its examination of alkalinity trends in large rivers covering a wide range of climate and land use types, but more detailed analyses will help to better elucidate temporal changes to river solutes and especially the effects they may have on coastal calcium carbonate saturation state.
Geophysical Research Letters | 2016
John T. Crawford; Luke C. Loken; Emily H. Stanley; Edward G. Stets; Mark M. Dornblaser; Robert G. Striegl
The Upper Mississippi River, engineered for river navigation in the 1930s, includes a series of low-head dams and navigation pools receiving elevated sediment and nutrient loads from the mostly agricultural basin. Using high-resolution, spatially resolved water quality sensor measurements along 1385 river kilometers, we show that primary productivity and organic matter accumulation affect river carbon dioxide and methane emissions to the atmosphere. Phytoplankton drive CO2 to near or below atmospheric equilibrium during the growing season, while anaerobic carbon oxidation supports a large proportion of the CO2 and CH4 production. Reductions of suspended sediment load, absent of dramatic reductions in nutrients, will likely further reduce net CO2 emissions from the river. Large river pools, like Lake Pepin, which removes the majority of upstream sediments, and large agricultural tributaries downstream that deliver significant quantities of sediments and nutrients, are likely to persist as major geographical drivers of greenhouse gas emissions.
Global Biogeochemical Cycles | 2017
Edward G. Stets; David Butman; Cory P. McDonald; Sarah M. Stackpoole; Michael D. DeGrandpre; Robert G. Striegl
Multiple processes support the significant efflux of carbon dioxide (CO2) from rivers and streams. Attribution of CO2 oversaturation will lead to better quantification of the freshwater carbon cycle and provide insights into the net cycling of nutrients and pollutants. CO2 production is closely related to O2 consumption because of the metabolic linkage of these gases. However, this relationship can be weakened due to dissolved inorganic carbon inputs from groundwater, carbonate buffering, calcification, and anaerobic metabolism. CO2 and O2 concentrations and other water quality parameters were analyzed in two data sets: a synoptic field study and nationwide water quality monitoring data. CO2 and O2 concentrations were strongly negatively correlated in both data sets (ρ = −0.67 and ρ = −0.63, respectively), although the correlations were weaker in high-alkalinity environments. In nearly all samples, the molar oversaturation of CO2 was a larger magnitude than molar O2 undersaturation. We used a dynamically coupled O2CO2 model to show that lags in CO2 air-water equilibration are a likely cause of this phenomenon. Lags in CO2 equilibration also impart landscape-scale differences in the behavior of CO2 between high- and low-alkalinity watersheds. Although the concept of carbonate buffering and how it creates lags in CO2 equilibration with the atmosphere is well understood, it has not been sufficiently integrated into our understanding of CO2 dynamics in freshwaters. We argue that the consideration of carbonate equilibria and its effects on CO2 dynamics are primary steps in understanding the sources and magnitude of CO2 oversaturation in rivers and streams.
Journal of The American Water Resources Association | 2015
Edward G. Stets; Valerie J. Kelly; Charles G. Crawford
Riverine nitrate (NO3) is a well-documented driver of eutrophication and hypoxia in coastal areas. The development of the elevated river NO3 concentration is linked to anthropogenic inputs from municipal, agricultural, and atmospheric sources. The intensity of these sources has varied regionally, through time, and in response to multiple causes such as economic drivers and policy responses. This study uses long-term water quality, land use, and other ancillary data to further describe the evolution of river NO3 concentrations at 22 monitoring stations in the United States (U.S.). The stations were selected for long-term data availability and to represent a range of climate and land-use conditions. We examined NO3 at the monitoring stations, using a flow-weighting scheme meant to account for interannual flow variability allowing greater focus on river chemical conditions. River NO3 concentration increased strongly during 1945-1980 at most of the stations and have remained elevated, but stopped increasing during 1981-2008. NO3 increased to a greater extent at monitoring stations in the Midwest U.S. and less so at those in the Eastern and Western U.S. We discuss 20th Century agricultural development in the U.S. and demonstrate that regional differences in NO3 concentration patterns were strongly related to an agricultural index developed using principal components analysis. This unique century-scale dataset adds to our understanding of long-term NO3 patterns in the U.S.
Journal of Geophysical Research | 2014
Sarah M. Stackpoole; Edward G. Stets; Robert G. Striegl
A nested sampling network on the Colorado (CR) and Missouri Rivers (MR) provided data to assess impacts of large-scale reservoir systems and climate on carbon export. The Load Estimator (LOADEST) model was used to estimate both dissolved inorganic and organic carbon (DIC and DOC) fluxes for a total of 22 sites along the main stems of the CR and MR. Both the upper CR and MR DIC and DOC fluxes increased longitudinally, but the lower CR fluxes decreased while the lower MRs continued to increase. We examined multiple factors through space and time that help explain these flux patterns. Seasonal variability in precipitation and temperature, along with site-level concentration versus discharge relationships proved to be significant factors explaining much of the difference among sites located below reservoirs as compared to sites located in more free-flowing segments of the river. The characterization of variability in carbon exports over space and time provides a basis for understanding carbon cycling and transport within river basins affected by large reservoir systems, particular in arid-to semi-arid ecosystems.
Scientific Investigations Report | 2012
Edward G. Stets; Valerie J. Kelly; Whitney P. Broussard; Thor E. Smith; Charles G. Crawford
..........................................................................................................................................................
Hydrological Processes | 2018
Sydney S. Foks; Edward G. Stets; Kamini Singha; David W. Clow
Water Mission Area, Laboratory and Analytical Services Division, U.S. Geological Survey, 3215 Marine Street Ste. E‐127, Boulder, CO 80303, USA Water Mission Area, Earth System Processes Division, U.S. Geological Survey, 3215 Marine Street Ste. E‐127, Boulder, CO 80303, USA Department of Geology and Geological Engineering, Hydrologic Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401, USA Colorado Water Science Center, U.S. Geological Survey, MS 415, Denver, CO 80225, USA Correspondence Sydney S. Foks, Water Mission Area, Laboratory and Analytical Services Division, U. S. Geological Survey, 3215 Marine Street Ste. E‐127, Boulder, CO 80303, USA. Email: [email protected] Funding information U.S. Geological Survey Water, Energy, and Biogeochemical Budgets Program