Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David C. Burnett.
Inhalation Toxicology | 2004
Anthony Js; Haley M; Manthei J; Way R; David C. Burnett; Gaviola B; Douglas R. Sommerville; Crosier R; Robert J. Mioduszewski; Sandra A. Thomson; Charles L. Crouse; Kathy L. Matson
The inhalation toxicity of cyclohexyl methylphosphonofluoridate (GF) was examined in male and female Sprague-Dawley rats exposed by whole body in a dynamic 750-L chamber. The objectives of this study were to (1) generate GF vapor in a dynamic inhalation chamber system, starting in the lethal to near-lethal concentration range, (2) examine dose-response effects of inhaled GF vapor and analyze the relationship between concentration (C) and exposure duration (T) in determining probability of lethality, and (3) establish a lethal potency ratio between GF and the more volatile agent Sarin (GB). Using a syringe pump, GF vapor concentrations were generated for exposure times of 10, 60, and 240 min. Dose-response curves with associated slopes were determined for each exposure duration by the Bliss probit method. GF vapor exposures were associated with sublethal clinical signs such as tremors, convulsions, salivation, and miosis. Concentration-exposure time values for lethality in 50% of the exposed population (LCT(50)) were calculated for 24-h and 14-day postexposure periods for 10-, 60-, and 240-min exposures. In general, LCT(50) values were lower in female rats than males and increased with exposure duration; that is, CT was not constant over time. The GF LCT(50) values for female rats were 253 mg min/m(3) at 10 min, 334 mg min/m(3) at 60 min, and 533 mg min/m(3) at 240 min, while the values for males were 371, 396, and 585 mg min/m(3), respectively. The GB LCT(50) values for female rats were 235 mg min/m(3) at 10 min, 355 mg min/m(3) at 60 min, and 840 mg min/m(3) at 240 min, while the values for males were 316, 433, and 1296 mg min/m(3), respectively. At longer exposure durations, the LCT(50) for GF was less than that found for GB but at shorter exposure durations, the LCT(50) for GF was more than that found for GB. Empirical models, consisting of the toxic load model plus higher order terms, were developed and successfully fit to the data.
Drug and Chemical Toxicology | 1997
William T. Muse; Jeffrey D. Bergmann; David C. Burnett; Charles L. Crouse; Bernardita P. Gaviola; Sandra A. Thomson
The terephthalic acid (TPA) smoke obscurants (M-83 grenade and M-8 smoke pot) were developed by the U.S. Army for training purposes to replace the more toxic hexachloroethane (HC) smoke. Inhalation toxicity testing and chemical characterization of pyrotechnically generated TPA was conducted to assess the health hazard potential of TPA and its combustion products. Fisher 344 rats were subjected to acute and repeated exposures to TPA smoke generated from the M-83 grenade. Acute exposure levels ranged from 150-1,900 mg/m3 for 30 minutes and repeated dose exposures ranged from 128-1,965 mg/m3 for 30 min/day for 5 days. Exposed and control rats were evaluated for toxic signs, and histopathologic changes. During exposure, the rats exhibited slight to moderate lacrimation, rhinorrhea, lethargy and dyspnea, which reversed within 1-hr post-exposure. No deaths occurred, even at the highest smoke concentrations. Histopathological changes were confined to exposure related nasal necrosis and inflammation in both the acute and repeated dose exposures at levels above 900 mg/m3. Chemical characterization of the M-83 grenade and the M-8 smoke pot showed that formaldehyde, benzene and carbon monoxide were the major organic vapor by-products formed. These by-products were above their respective ACGIH threshold limit values at various concentrations, but should not pose a hazard if the smoke is deployed in an open area. Overall, TPA is a safer training smoke to replace the HC smoke.
Inhalation Toxicology | 2014
Stanley W. Hulet; Douglas R. Sommerville; Dennis B. Miller; Jacqueline A. Scotto; William T. Muse; David C. Burnett
Abstract Sexually mature male and female Gottingen minipigs were exposed to various concentrations of GB and GF vapor via whole-body inhalation exposures or to liquid GB or GF via intravenous or subcutaneous injections. Vapor inhalation exposures were for 10, 60 or 180 min. Maximum likelihood estimation was used to calculate the median effect levels for severe effects (ECT50 and ED50) and lethality (LCT50 and LD50). Ordinal regression was used to model the concentration × time profile of the agent toxicity. Contrary to that predicted by Haber’s rule, LCT50 values increased as the duration of the exposures increased for both nerve agents. The toxic load exponents (n) were calculated to be 1.38 and 1.28 for GB and GF vapor exposures, respectively. LCT50 values for 10-, 60- and 180-min exposures to vapor GB in male minipigs were 73, 106 and 182 mg min/m3, respectively. LCT50 values for 10-, 60 - and 180-min exposures to vapor GB in female minipigs were 87, 127 and 174 mg min/m3, respectively. LCT50 values for 10-, 60- and 180-min exposures to vapor GF in male minipigs were 218, 287 and 403 mg min/m3, respectively. LCT50 values for 10-, 60- and 180-min exposures in female minipigs were 183, 282 and 365 mg min/m3, respectively. For GB vapor exposures, there was a tenuous gender difference which did not exist for vapor GF exposures. Surprisingly, GF was 2–3 times less potent than GB via the inhalation route of exposure regardless of exposure duration. Additionally GF was found to be less potent than GB by intravenous and subcutaneous routes.
Chemical Research in Toxicology | 2017
Dan Carmany; Andrew J. Walz; Fu-Lian Hsu; Bernard J. Benton; David C. Burnett; Jennifer Gibbons; D. Noort; Trevor Glaros; Jennifer W. Sekowski
Organophosphorus (OP) nerve agents continue to be a threat at home and abroad during the war against terrorism. Human exposure to nerve agents such as VX results in a cascade of toxic effects relative to the exposure level including ocular miosis, excessive secretions, convulsions, seizures, and death. The primary mechanism behind these overt symptoms is the disruption of cholinergic pathways. While much is known about the primary toxicity mechanisms of nerve agents, there remains a paucity of information regarding impacts on other pathways and systemic effects. These are important for establishing a comprehensive understanding of the toxic mechanisms of OP nerve agents. To identify novel proteins that interact with VX, and that may give insight into these other mechanisms, we used activity-based protein profiling (ABPP) employing a novel VX-probe on lysates from rat heart, liver, kidney, diaphragm, and brain tissue. By making use of a biotin linked VX-probe, proteins covalently bound by the probe were isolated and enriched using streptavidin beads. The proteins were then digested, labeled with isobarically distinct tandem mass tag (TMT) labels, and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Quantitative analysis identified 132 bound proteins, with many proteins found in multiple tissues. As with previously published ABPP OP work, monoacylglycerol lipase associated proteins and fatty acid amide hydrolase (FAAH) were shown to be targets of VX. In addition to these two and other predicted neurotransmitter-related proteins, a number of proteins involved with energy metabolism were identified. Four of these enzymes, mitochondrial isocitrate dehydrogenase 2 (IDH2), isocitrate dehydrogenase 3 (IDH3), malate dehydrogenase (MDH), and succinyl CoA (SCS) ligase, were assayed for VX inhibition. Only IDH2 NADP+ activity was shown to be inhibited directly. This result is consistent with other work reporting animals exposed to OP compounds exhibit reduced IDH activity. Though clearly a secondary mechanism for toxicity, this is the first time VX has been shown to directly interfere with energy metabolism. Taken together, the ABPP work described here suggests the discovery of novel protein-agent interactions, which could be useful for the development of novel diagnostics or potential adjuvant therapeutics.
Journal of Ocular Pharmacology and Therapeutics | 2005
Paul A. Dabisch; David C. Burnett; Dennis B. Miller; Edward M. Jakubowski; William T. Muse; Jeffry S. Forster; Jacqueline A. Scotto; Jill R. Jarvis; Emily A. Davis; Stanley W. Hulet; Sharon A. Reutter; Robert J. Mioduszewski; Sandra A. Thomson
Archive | 2002
Robert J. Mioduszewski; James H. Manthei; Ruth A. Way; David C. Burnett; Bernardita P. Gaviola
Archive | 2005
Kathy L. Matson; Charles L. Crouse; Dennis B. Miller; Ronald A. Evans; Jeffrey M. McGuire; Jill R. Jarvis; Bernard J. Benton; Douglas R. Sommerville; Jacqueline A. Scotto; David C. Burnett
Archive | 2004
James H. Manthei; Charles L. Crouse; Ruth A. Way; David A. McCaskey; John C. Carpin; David C. Burnett
Archive | 2006
Stanley W. Hulet; Douglas R. Sommerville; Edward M. Jakubowski; Bernard J. Benton; Jeffry S. Forster; Paul A. Dabisch; Jacqueline A. Scotto; Ronald B. Crosier; William T. Muse; Bernardita I. Gaviola; David C. Burnett; Sharon A. Reutter; Robert J. Mioduszewski; Sandra A. Thomson; Dennis B. Miller; Jill R. Jarvis; Candice L. Krauthauser
Archive | 1988
Sandra A. Thomson; David C. Burnett; Charles L. Crouse; Roger J. Hilaski; William T. Muse