David C. Hayward
Australian National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David C. Hayward.
Molecular Ecology | 2012
Aurélie Moya; L. Huisman; Eldon E. Ball; David C. Hayward; Lauretta C. Grasso; Chia-Miin Chua; H.N. Woo; Jean-Pierre Gattuso; Sylvain Forêt; David J. Miller
The impact of ocean acidification (OA) on coral calcification, a subject of intense current interest, is poorly understood in part because of the presence of symbionts in adult corals. Early life history stages of Acropora spp. provide an opportunity to study the effects of elevated CO2 on coral calcification without the complication of symbiont metabolism. Therefore, we used the Illumina RNAseq approach to study the effects of acute exposure to elevated CO2 on gene expression in primary polyps of Acropora millepora, using as reference a novel comprehensive transcriptome assembly developed for this study. Gene ontology analysis of this whole transcriptome data set indicated that CO2‐driven acidification strongly suppressed metabolism but enhanced extracellular organic matrix synthesis, whereas targeted analyses revealed complex effects on genes implicated in calcification. Unexpectedly, expression of most ion transport proteins was unaffected, while many membrane‐associated or secreted carbonic anhydrases were expressed at lower levels. The most dramatic effect of CO2‐driven acidification, however, was on genes encoding candidate and known components of the skeletal organic matrix that controls CaCO3 deposition. The skeletal organic matrix effects included elevated expression of adult‐type galaxins and some secreted acidic proteins, but down‐regulation of other galaxins, secreted acidic proteins, SCRiPs and other coral‐specific genes, suggesting specialized roles for the members of these protein families and complex impacts of OA on mineral deposition. This study is the first exhaustive exploration of the transcriptomic response of a scleractinian coral to acidification and provides an unbiased perspective on its effects during the early stages of calcification.
Proceedings of the National Academy of Sciences of the United States of America | 2002
David C. Hayward; Gabrielle Samuel; Patricia C. Pontynen; Julian Catmull; Robert Saint; David J. Miller; Eldon E. Ball
As the closest outgroup to the Bilateria, the Phylum Cnidaria is likely to be critical to understanding the origins and evolution of body axes. Proteins of the decapentaplegic (DPP)/bone morphogenetic protein (BMP) 2/4 subfamily are central to the specification of the dorsoventral (D/V) axis in bilateral animals, albeit with an axis inversion between arthropods and chordates. We show that a dpp/BMP2/4 ortholog (bmp2/4-Am) is present in the reef-building scleractinian coral, Acropora millepora (Class Anthozoa) and that it is capable of causing phenotypic effects in Drosophila that mimic those of the endogenous dpp gene. We also show that, during coral embryonic development, bmp2/4-Am expression is localized in an ectodermal region adjacent to the blastopore. Thus, a representative of the DPP/BMP2/4 subfamily of ligands was present in the common ancestor of diploblastic and triploblastic animals where it was probably expressed in a localized fashion during development. A localized source of DPP/BMP2/4 may have already been used in axis formation in this ancestor, or it may have provided a means by which an axis could evolve in triploblastic animals.
BMC Genomics | 2008
Lauretta C. Grasso; John H. Maindonald; Stephen Rudd; David C. Hayward; Robert Saint; David J. Miller; Eldon E. Ball
BackgroundAnthozoan cnidarians are amongst the simplest animals at the tissue level of organization, but are surprisingly complex and vertebrate-like in terms of gene repertoire. As major components of tropical reef ecosystems, the stony corals are anthozoans of particular ecological significance. To better understand the molecular bases of both cnidarian development in general and coral-specific processes such as skeletogenesis and symbiont acquisition, microarray analysis was carried out through the period of early development – when skeletogenesis is initiated, and symbionts are first acquired.ResultsOf 5081 unique peptide coding genes, 1084 were differentially expressed (P ≤ 0.05) in comparisons between four different stages of coral development, spanning key developmental transitions. Genes of likely relevance to the processes of settlement, metamorphosis, calcification and interaction with symbionts were characterised further and their spatial expression patterns investigated using whole-mount in situ hybridization.ConclusionThis study is the first large-scale investigation of developmental gene expression for any cnidarian, and has provided candidate genes for key roles in many aspects of coral biology, including calcification, metamorphosis and symbiont uptake. One surprising finding is that some of these genes have clear counterparts in higher animals but are not present in the closely-related sea anemone Nematostella. Secondly, coral-specific processes (i.e. traits which distinguish corals from their close relatives) may be analogous to similar processes in distantly related organisms. This first large-scale application of microarray analysis demonstrates the potential of this approach for investigating many aspects of coral biology, including the effects of stress and disease.
Development Genes and Evolution | 1999
David C. Hayward; Michael J. Bastiani; John W.H. Trueman; James W. Truman; Lynn M. Riddiford; Eldon E. Ball
Abstract The cellular response to steroid hormones is mediated by nuclear receptors which act by regulating transcription. In Drosophila melanogaster, the receptor for the insect molting hormone, 20-hydroxyecdysone, is a heterodimer composed of the Ecdysone Receptor and Ultraspiracle (USP) proteins. The DNA binding domains of arthropod USPs and their vertebrate homologs, the retinoid X receptor (RXR) family, are highly conserved. The ligand binding domain sequences, however, divide into two distinct groups. One group consists of sequences from members of the holometabolous higher insect orders Diptera and Lepidoptera, the other of sequences from vertebrates, a crab and a tick. We here report the sequence of an RXR/USP from the hemimetabolous orthopteran, Locusta migratoria. The locust RXR/USP ligand binding domain clearly falls in the vertebrate-crab-tick rather than the dipteran-lepidopteran group. The reason for the evolutionarily abrupt divergence of the dipteran and lepidopteran sequences is unknown, but it could be a change in the type of ligand bound or the loss of ligand altogether.
Development Genes and Evolution | 2001
David C. Hayward; Julian Catmull; John S. Reece-Hoyes; Heinrich Berghammer; Heather Dodd; Steven J. Hann; David J. Miller; Eldon E. Ball
Abstract. We have cloned a Hox-like gene, cnox-2Am, from a staghorn coral, Acropora millepora, an anthozoan cnidarian, and characterised its embryonic and larval expression. cnox-2Am and its orthologs in other cnidarians and Trichoplax most closely resemble the Gsx and, to a lesser extent, Hox 3/4 proteins. Developmental northern blots and in situ hybridisation are consistent in showing that cnox-2Am message appears in the planula larva shortly after the oral/aboral axis is formed following gastrulation. Expression is localised in scattered ectodermal cells with a restricted distribution along the oral/aboral body axis. They are most abundant along the sides of the cylindrical larva, rare in the oral region and absent from the aboral region. These cells, which on morphological grounds we believe to be neurons, are of two types; one tri-or multipolar near the basement membrane and a second extending projections in both directions from a mid-ectodermal nucleus. Anti-RFamide staining reveals neurons with a similar morphology to the cnox-2Am-expressing cells. However, RFamide-expressing neurons are more abundant, especially at the aboral end of the planula, where there is no cnox-2Am expression. The pattern of expression of cnox-2Am resembles that of Gsx orthologs in Drosophila and vertebrates in being expressed in a spatially restricted portion of the nervous system.
Developmental Biology | 2011
Lauretta C. Grasso; A.P. Negri; Sylvain Forêt; Robert Saint; David C. Hayward; David J. Miller; Eldon E. Ball
Like many other cnidarians, corals undergo metamorphosis from a motile planula larva to a sedentary polyp. In some sea anemones such as Nematostella this process is a smooth transition requiring no extrinsic stimuli, but in many corals it is more complex and is cue-driven. To better understand the molecular events underlying coral metamorphosis, competent larvae were treated with either a natural inducer of settlement (crustose coralline algae chips/extract) or LWamide, which bypasses the settlement phase and drives larvae directly into metamorphosis. Microarrays featuring >8000 Acropora unigenes were used to follow gene expression changes during the 12h period after these treatments, and the expression patterns of specific genes, selected on the basis of the array experiments, were investigated by in situ hybridization. Three patterns of expression were common-an aboral pattern restricted to the searching/settlement phase, a second phase of aboral expression corresponding to the beginning of the development of the calicoblastic ectoderm and continuing after metamorphosis, and a later orally-restricted pattern.
Evolution & Development | 2003
Steven W. Miller; David C. Hayward; Thomas A. Bunch; David J. Miller; Eldon E. Ball; Vivian J. Bardwell; David Zarkower; Danny L. Brower
SUMMARY The identification and functional studies of DM domain‐containing proteins Doublesex, MAB‐3, and DMRT1 indicated that flies, nematodes, and humans share at least some of the molecular mechanisms of sex determination. We identified a gene, AmDM1, from the coral Acropora millepora that encodes a homologous DM domain‐containing protein. Molecular analyses show that the AmDM1 primary transcript is processed to generate four different messenger RNAs. Alternative use of two polyadenylation sites produces transcripts that vary only in the 3′ untranslated regions, whereas alternative splicing generates transcripts with and without the region coding for the DM domain. All the transcripts include a second motif, the DMA domain, which is found in a number of other proteins containing a DM domain. Hermaphroditic A. millepora differentiates sexual cells seasonally before the spring spawn, and Northern blot analysis shows that the AmDM1 transcripts are present at higher levels during sexual differentiation. The non‐DM domain‐containing messages are also present at significant levels in late embryos, but DM domain transcripts are extremely rare at this stage. These data suggest that the association of DM domain proteins and sexual determination or differentiation predates the separation of the Cnidaria from the rest of the Metazoa.
Gene | 2000
Robert Kucharski; Eldon E. Ball; David C. Hayward; Ryszard Maleszka
We have cloned and characterized a cDNA encoding a putative glutamate transporter, Am-EAAT, from the brain of the honeybee, Apis mellifera. The 543-amino-acid AmEAAT gene product shares the highest sequence identity (54%) with the human EAAT2 subtype. Am-EAAT is expressed predominantly in the brain, and its transcripts are abundant in the optic lobes and inner compact Kenyon cells of the mushroom bodies (MBs), with most other regions of the brain showing lower levels of Am-EAAT expression. High levels of Am-EAAT message are found in pupal stages, possibly indicating a role for glutamate in the developing brain.
Molecular Ecology | 2015
Aurélie Moya; L. Huisman; Sylvain Forêt; Jean-Pierre Gattuso; David C. Hayward; Eldon E. Ball; David J. Miller
Corals play a key role in ocean ecosystems and carbonate balance, but their molecular response to ocean acidification remains unclear. The only previous whole‐transcriptome study (Moya et al. Molecular Ecology, 2012; 21, 2440) documented extensive disruption of gene expression, particularly of genes encoding skeletal organic matrix proteins, in juvenile corals (Acropora millepora) after short‐term (3 d) exposure to elevated pCO2. In this study, whole‐transcriptome analysis was used to compare the effects of such ‘acute’ (3 d) exposure to elevated pCO2 with a longer (‘prolonged’; 9 d) period of exposure beginning immediately post‐fertilization. Far fewer genes were differentially expressed under the 9‐d treatment, and although the transcriptome data implied wholesale disruption of metabolism and calcification genes in the acute treatment experiment, expression of most genes was at control levels after prolonged treatment. There was little overlap between the genes responding to the acute and prolonged treatments, but heat shock proteins (HSPs) and heat shock factors (HSFs) were over‐represented amongst the genes responding to both treatments. Amongst these was an HSP70 gene previously shown to be involved in acclimation to thermal stress in a field population of another acroporid coral. The most obvious feature of the molecular response in the 9‐d treatment experiment was the upregulation of five distinct Bcl‐2 family members, the majority predicted to be anti‐apoptotic. This suggests that an important component of the longer term response to elevated CO2 is suppression of apoptosis. It therefore appears that juvenile A. millepora have the capacity to rapidly acclimate to elevated pCO2, a process mediated by upregulation of specific HSPs and a suite of Bcl‐2 family members.
BMC Evolutionary Biology | 2009
Alejandro Reyes-Bermudez; Zhiyi Lin; David C. Hayward; David J. Miller; Eldon E. Ball
BackgroundThe coral skeleton consists of CaCO3 deposited upon an organic matrix primarily as aragonite. Currently galaxin, from Galaxea fascicularis, is the only soluble protein component of the organic matrix that has been characterized from a coral. Three genes related to galaxin were identified in the coral Acropora millepora.ResultsOne of the Acropora genes (Amgalaxin) encodes a clear galaxin ortholog, while the others (Amgalaxin-like 1 and Amgalaxin-like 2) encode larger and more divergent proteins. All three proteins are predicted to be extracellular and share common structural features, most notably the presence of repetitive motifs containing dicysteine residues. In situ hybridization reveals distinct, but partially overlapping, spatial expression of the genes in patterns consistent with distinct roles in calcification. Both of the Amgalaxin-like genes are expressed exclusively in the early stages of calcification, while Amgalaxin continues to be expressed in the adult, consistent with the situation in the coral Galaxea.ConclusionComparisons with molluscs suggest functional convergence in the two groups; lustrin A/pearlin proteins may be the mollusc counterparts of galaxin, whereas the galaxin-like proteins combine characteristics of two distinct proteins involved in mollusc calcification. Database searches indicate that, although sequences with high similarity to the galaxins are restricted to the Scleractinia, more divergent members of this protein family are present in other cnidarians and some other metazoans. We suggest that ancestral galaxins may have been secondarily recruited to roles in calcification in the Triassic, when the Scleractinia first appeared. Understanding the evolution of the broader galaxin family will require wider sampling and expression analysis in a range of cnidarians and other animals.