Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Saint is active.

Publication


Featured researches published by Robert Saint.


Cell | 1994

Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation

Jürgen A. Knoblich; Karsten Sauer; Lynn Jones; Helena E. Richardson; Robert Saint; Christian F. Lehner

Most cells of the dorsal epidermis exit from the mitotic cycle after division 16 in Drosophila embryogenesis. This exit is dependent on the down-regulation of Drosophila cyclin E (DmcycE) during the final mitotic cycle. Ectopic expression of DmcycE after the final mitosis induces entry into S phase and reaccumulation of G2 cyclins and results in progression through a complete additional cell cycle. Conversely, analyses in DmcycE mutant embryos indicate that cyclin E is required for progression through S phase of the mitotic cycle. Moreover, endoreplication, which occurs in late wild-type embryos in the same pattern as DmcycE expression, is not observed in the mutant embryos. Therefore, Drosophila cyclin E, which forms a complex with the Dmcdc2c kinase, controls progression through S phase and its down-regulation limits embryonic proliferation.


Current Biology | 2003

EST Analysis of the Cnidarian Acropora millepora Reveals Extensive Gene Loss and Rapid Sequence Divergence in the Model Invertebrates

R. Daniel Kortschak; Gabrielle Samuel; Robert Saint; David J. Miller

A significant proportion of mammalian genes are not represented in the genomes of Drosophila, Caenorhabditis or Saccharomyces, and many of these are assumed to have been vertebrate innovations. To test this assumption, we conducted a preliminary EST project on the anthozoan cnidarian, Acropora millepora, a basal metazoan. More than 10% of the Acropora ESTs with strong metazoan matches to the databases had clear human homologs but were not represented in the Drosophila or Caenorhabditis genomes; this category includes a surprising diversity of transcription factors and metabolic proteins that were previously assumed to be restricted to vertebrates. Consistent with higher rates of divergence in the model invertebrates, three-way comparisons show that most Acropora ESTs match human sequences much more strongly than they do any Drosophila or Caenorhabditis sequence. Gene loss has thus been much more extensive in the model invertebrate lineages than previously assumed and, as a consequence, some genes formerly thought to be vertebrate inventions must have been present in the common metazoan ancestor. The complexity of the Acropora genome is paradoxical, given that this organism contains apparently few tissue types and the simplest extant nervous system consisting of a morphologically homogeneous nerve net.


Current Biology | 2010

Chaperone-assisted selective autophagy is essential for muscle maintenance

Verena Arndt; Nikolaus Dick; Riga Tawo; Michael Dreiseidler; Daniela Wenzel; Michael Hesse; Dieter O. Fürst; Paul Saftig; Robert Saint; Bernd K. Fleischmann; Michael Hoch; Jörg Höhfeld

How are biological structures maintained in a cellular environment that constantly threatens protein integrity? Here we elucidate proteostasis mechanisms affecting the Z disk, a protein assembly essential for actin anchoring in striated muscles, which is subjected to mechanical, thermal, and oxidative stress during contraction [1]. Based on the characterization of the Drosophila melanogaster cochaperone Starvin (Stv), we define a conserved chaperone machinery required for Z disk maintenance. Instead of keeping Z disk proteins in a folded conformation, this machinery facilitates the degradation of damaged components, such as filamin, through chaperone-assisted selective autophagy (CASA). Stv and its mammalian ortholog BAG-3 coordinate the activity of Hsc70 and the small heat shock protein HspB8 during disposal that is initiated by the chaperone-associated ubiquitin ligase CHIP and the autophagic ubiquitin adaptor p62. CASA is thus distinct from chaperone-mediated autophagy, previously shown to facilitate the ubiquitin-independent, direct translocation of a client across the lysosomal membrane [2]. Impaired CASA results in Z disk disintegration and progressive muscle weakness in flies, mice, and men. Our findings reveal the importance of chaperone-assisted degradation for the preservation of cellular structures and identify muscle as a tissue that highly relies on an intact proteostasis network, thereby shedding light on diverse myopathies and aging.


Developmental Cell | 2003

A RhoGEF and Rho Family GTPase-Activating Protein Complex Links the Contractile Ring to Cortical Microtubules at the Onset of Cytokinesis

W.Gregory Somers; Robert Saint

The mechanism that positions the cytokinetic contractile ring is unknown, but derives from the spindle midzone. We show that an interaction between the Rho GTP exchange factor, Pebble, and the Rho family GTPase-activating protein, RacGAP50C, connects the contractile ring to cortical microtubules at the site of furrowing in D. melanogaster cells. Pebble regulates actomyosin organization, while RacGAP50C and its binding partner, the Pavarotti kinesin-like protein, regulate microtubule bundling. All three factors are required for cytokinesis. As furrowing begins, these proteins colocalize to a cortical equatorial ring. We propose that RacGAP50C-Pavarotti complexes travel on cortical microtubules to the cell equator, where they associate with the Pebble RhoGEF to position contractile ring formation and coordinate F-actin and microtubule remodeling during cytokinesis.


DNA and Cell Biology | 1999

A His2AvDGFP Fusion Gene Complements a Lethal His2AvD Mutant Allele and Provides an in Vivo Marker for Drosophila Chromosome Behavior

Michael Clarkson; Robert Saint

We have generated Drosophila melanogaster lines carrying a modified genomic fragment which encodes the D. melanogaster variant H2A.F/Z class histone, His2AvD, fused to the green fluorescent protein (GFP) of the jellyfish Aequorea victoria. We show here that the fusion protein consists of functional GFP and functional histone His2AvD. The His2AvD portion of the fusion gene was shown to be functional by rescue of His2AvD mutant lethality. Fluorescence of the fusion protein in vivo was observed in embryonic cleavage stage interphase nuclei and on chromosomes as early as cycle 9, correlating with activation of transcription. Unlike transcription factors, the His2AvDGFP protein remained on transcriptionally inactive chromosomes throughout mitosis. Subsequently, fluorescence was observed in nuclei at all stages of embryonic and larval development and in adult somatic tissues, consistent with the distribution of His2AvD observed by immunohistochemical staining. This functional fusion histone acts as an excellent in vivo marker for chromosomes and chromosome behavior and, given the ability of the fusion gene to prevent null-mutant lethality, without disrupting normal cellular functions. The very high level of conservation of the H2A.F/Z family of variant histones suggests that the equivalent fusion protein construct should function equally well in a wide range of organisms.


Nature | 1999

Regions of variant histone His2AvD required for Drosophila development

Michael Clarkson; Julian R.E. Wells; F. Gibson; Robert Saint; David J. Tremethick

One way in which a distinct chromosomal domain could be established to carry out a specialized function is by the localized incorporation of specific histone variants into nucleosomes. H2AZ, one such variant of the histone protein H2A, is required for the survival of Drosophila melanogaster, Tetrahymena thermophila and mice (R. Faast et al., in preparation). To search for the unique features of Drosophila H2AZ (His2AvD, also referred to as H2AvD) that are required for its essential function, we have performed amino-acid swap experiments in which residues unique to Drosophila His2AvD were replaced with equivalently positioned Drosophila H2A.1 residues. Mutated His2AvD genes encoding modified versions of this histone were transformed into Drosophila and tested for their ability to rescue null-mutant lethality. We show that the unique feature of His2AvD does not reside in its histone fold but in its carboxy-terminal domain. This C-terminal region maps to a short α-helix in H2A that is buried deep inside the nucleosome core.


Nucleic Acids Research | 2011

Expression of distinct RNAs from 3′ untranslated regions

Tim R. Mercer; Dagmar Wilhelm; Marcel E. Dinger; Giulia Soldà; Darren Korbie; Evgeny A. Glazov; Vy Truong; Maren Schwenke; Cas Simons; Klaus I. Matthaei; Robert Saint; Peter Koopman; John S. Mattick

The 3′ untranslated regions (3′UTRs) of eukaryotic genes regulate mRNA stability, localization and translation. Here, we present evidence that large numbers of 3′UTRs in human, mouse and fly are also expressed separately from the associated protein-coding sequences to which they are normally linked, likely by post-transcriptional cleavage. Analysis of CAGE (capped analysis of gene expression), SAGE (serial analysis of gene expression) and cDNA libraries, as well as microarray expression profiles, demonstrate that the independent expression of 3′UTRs is a regulated and conserved genome-wide phenomenon. We characterize the expression of several 3′UTR-derived RNAs (uaRNAs) in detail in mouse embryos, showing by in situ hybridization that these transcripts are expressed in a cell- and subcellular-specific manner. Our results suggest that 3′UTR sequences can function not only in cis to regulate protein expression, but also intrinsically and independently in trans, likely as noncoding RNAs, a conclusion supported by a number of previous genetic studies. Our findings suggest novel functions for 3′UTRs, as well as caution in the use of 3′UTR sequence probes to analyze gene expression.


Trends in Biochemical Sciences | 2000

ARID proteins come in from the desert.

R. Daniel Kortschak; Philip W. Tucker; Robert Saint

Members of the recently discovered ARID (AT-rich interaction domain) family of DNA-binding proteins are found in fungi and invertebrate and vertebrate metazoans. ARID-encoding genes are involved in a variety of biological processes including embryonic development, cell lineage gene regulation and cell cycle control. Although the specific roles of this domain and of ARID-containing proteins in transcriptional regulation are yet to be elucidated, they include both positive and negative transcriptional regulation and a likely involvement in the modification of chromatin structure.


Molecular and Cellular Biology | 1996

Characterization of the dead ringer gene identifies a novel, highly conserved family of sequence-specific DNA-binding proteins.

Stephen L. Gregory; R.D. Kortschak; B Kalionis; Robert Saint

We reported the identification of a new family of DNA-binding proteins from our characterization of the dead ringer (dri) gene of Drosophila melanogaster. We show that dri encodes a nuclear protein that contains a sequence-specific DNA-binding domain that bears no similarity to known DNA-binding domains. A number of proteins were found to contain sequences homologous to this domain. Other proteins containing the conserved motif include yeast SWI1, two human retinoblastoma binding proteins, and other mammalian regulatory proteins. A mouse B-cell-specific regulator exhibits 75% identity with DRI over the 137-amino-acid DNA-binding domains of these proteins, indicating a high degree of conservation of this domain. Gel retardation and optimal binding site screens revealed that the in vitro sequence specificity of DRI is strikingly similar to that of many homeodomain proteins, although the sequence and predicted secondary structure do not resemble a homeodomain. The early general expression of dri and the similarity of DRI and homeodomain in vitro DNA-binding specificity compound the problem of understanding the in vivo specificity of action of these proteins. Maternally derived dri product is found throughout the embryo until germ band extension, when dri is expressed in a developmentally regulated set of tissues, including salivary gland ducts, parts of the gut, and a subset of neural cells. The discovery of this new, conserved DNA-binding domain offers an explanation for the regulatory activity of several important members of this class and predicts significant regulatory roles for the others.


Development Genes and Evolution | 2007

RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera)

Joanna Maleszka; Sylvain Forêt; Robert Saint; Ryszard Maleszka

Small chemosensory proteins (CSPs) belong to a conserved, but poorly understood, protein family found in insects and other arthropods. They exhibit both broad and restricted expression patterns during development. In this paper, we used a combination of genome annotation, transcriptional profiling and RNA interference to unravel the functional significance of a honeybee gene (csp5) belonging to the CSP family. We show that csp5 expression resembles the maternal-zygotic pattern that is characterized by the initiation of transcription in the ovary and the replacement of maternal mRNA with embryonic mRNA. Blocking the embryonic expression of csp5 with double-stranded RNA causes abnormalities in all body parts where csp5 is highly expressed. The treated embryos show a “diffuse”, often grotesque morphology, and the head skeleton appears to be severely affected. They are ‘unable-to-hatch’ and cannot progress to the larval stages. Our findings reveal a novel, essential role for this gene family and suggest that csp5 (unable-to-hatch) is an ectodermal gene involved in embryonic integument formation. Our study confirms the utility of an RNAi approach to functional characterization of novel developmental genes uncovered by the honeybee genome project and provides a starting point for further studies on embryonic integument formation in this insect.

Collaboration


Dive into the Robert Saint's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Hayward

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Eldon E. Ball

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Tetyana Shandala

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony M. Brumby

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge