Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David C. Love is active.

Publication


Featured researches published by David C. Love.


Environmental Health | 2010

Rapidly measured indicators of recreational water quality and swimming-associated illness at marine beaches: a prospective cohort study.

Timothy J. Wade; Elizabeth Sams; Kristen P. Brenner; Richard A. Haugland; Eunice C. Chern; Michael J. Beach; Larry Wymer; Clifford C. Rankin; David C. Love; Quanlin Li; Rachel T. Noble; Alfred P. Dufour

IntroductionIn the United States and elsewhere, recreational water quality is monitored for fecal indicator bacteria to help prevent swimming-associated illnesses. Standard methods to measure these bacteria take at least 24 hours to obtain results. Molecular approaches such as quantitative polymerase chain reaction (qPCR) can estimate these bacteria faster, in under 3 hours. Previously, we demonstrated that measurements of the fecal indicator bacteria Enterococcus using qPCR were associated with gastrointestinal (GI) illness among swimmers at freshwater beaches. In this paper, we report on results from three marine beach sites.MethodsWe interviewed beach-goers and collected water samples at marine beaches affected by treated sewage discharges in Mississippi in 2005, and Rhode Island and Alabama in 2007. Ten to twelve days later, we obtained information about gastrointestinal, respiratory, eye, ear and skin symptoms by telephone. We tested water samples for fecal indicator organisms using qPCR and other methods.ResultsWe enrolled 6,350 beach-goers. The occurrence of GI illness among swimmers was associated with a log10-increase in exposure to qPCR-determined estimates of fecal indicator organisms in the genus Enterococcus (AOR = 2.6, 95% CI 1.3-5.1) and order Bacteroidales (AOR = 1.9, 95% CI 1.3-2.9). Estimates of organisms related to Clostridium perfringens and a subgroup of organisms in the genus Bacteroides were also determined by qPCR in 2007, as was F+ coliphage, but relationships between these indicators and illness were not statistically significant.ConclusionsThis study provides the first evidence of a relationship between gastrointestinal illness and estimates of fecal indicator organisms determined by qPCR at marine beaches.


Environmental Science & Technology | 2009

Covariation and photoinactivation of traditional and novel indicator organisms and human viruses at a sewage-impacted marine beach.

Alexandria B. Boehm; Kevan M. Yamahara; David C. Love; Britt M. Peterson; Kristopher McNeill; Kara L. Nelson

Sunlight modulates concentrations of Escherichia coli and enterococci in marine waters. However, the mechanism of photoinactivation is poorly understood. Additionally, little is known about photoinactivation of other fecal indicators and human viruses in recreational waters. We sampled nearshore waters at Avalon Beach, California hourly for 72 h for reactive oxygen species (ROS), traditional indicator bacteria (E. coli and enterococci, and QPCR-based detection of enterococci), F+ (DNA and RNA) and somatic coliphages, the human-specific marker in Bacteroidales (HF marker), human enterovirus, and human adenovirus. E. coli and enterococci (regardless of measurement technique) covaried with each other and the coliphages suggesting similar sources and fates. The occurrence of the HF and enterovirus markers was correlated, but their occurrence was not positively correlated with the other indicators. Lower concentrations or occurrence of all microbes, excluding the HF and enterovirus markers, were observed during sunlit as opposed to dark hours, pointing to the importance of photoinactivation. Empirical-deterministic models for a subset of microbial indicators were created to determine field-relevant sunlight inactivation rates while accounting for time dependent sources and sinks. Photoinactivation rates of enterococci and E. coli, enterococci measured by QPCR, and somatic coliphage were estimated at 7, 6, 3, and 28 d(-1) I(-1), respectively, where I is UVB intensity in W/m(2). Average H(2)O(2) was 183 nM and the maximum singlet oxygen steady state concentration was 6.6 fM. Given the clarity of the water, direct genomic damage of bacteria and coliphage, as well as indirect endogenous damage of bacteria, were likely the most important inactivation mechanisms, but we cannot rule out a contribution by indirect mechanisms involving the H(2)O(2) and singlet oxygen produced exogenously.


Environmental Health Perspectives | 2013

Roxarsone, inorganic arsenic, and other arsenic species in chicken: a U.S.-based market basket sample.

Keeve E. Nachman; Patrick Baron; Georg Raber; Kevin A. Francesconi; Ana Navas-Acien; David C. Love

Background: Inorganic arsenic (iAs) causes cancer and possibly other adverse health outcomes. Arsenic-based drugs are permitted in poultry production; however, the contribution of chicken consumption to iAs intake is unknown. Objectives: We sought to characterize the arsenic species profile in chicken meat and estimate bladder and lung cancer risk associated with consuming chicken produced with arsenic-based drugs. Methods: Conventional, antibiotic-free, and organic chicken samples were collected from grocery stores in 10 U.S. metropolitan areas from December 2010 through June 2011. We tested 116 raw and 142 cooked chicken samples for total arsenic, and we determined arsenic species in 65 raw and 78 cooked samples that contained total arsenic at ≥ 10 µg/kg dry weight. Results: The geometric mean (GM) of total arsenic in cooked chicken meat samples was 3.0 µg/kg (95% CI: 2.5, 3.6). Among the 78 cooked samples that were speciated, iAs concentrations were higher in conventional samples (GM = 1.8 µg/kg; 95% CI: 1.4, 2.3) than in antibiotic-free (GM = 0.7 µg/kg; 95% CI: 0.5, 1.0) or organic (GM = 0.6 µg/kg; 95% CI: 0.5, 0.8) samples. Roxarsone was detected in 20 of 40 conventional samples, 1 of 13 antibiotic-free samples, and none of the 25 organic samples. iAs concentrations in roxarsone-positive samples (GM = 2.3 µg/kg; 95% CI: 1.7, 3.1) were significantly higher than those in roxarsone-negative samples (GM = 0.8 µg/kg; 95% CI: 0.7, 1.0). Cooking increased iAs and decreased roxarsone concentrations. We estimated that consumers of conventional chicken would ingest an additional 0.11 µg/day iAs (in an 82-g serving) compared with consumers of organic chicken. Assuming lifetime exposure and a proposed cancer slope factor of 25.7 per milligram per kilogram of body weight per day, this increase in arsenic exposure could result in 3.7 additional lifetime bladder and lung cancer cases per 100,000 exposed persons. Conclusions: Conventional chicken meat had higher iAs concentrations than did conventional antibiotic-free and organic chicken meat samples. Cessation of arsenical drug use could reduce exposure and the burden of arsenic-related disease in chicken consumers.


Epidemiology | 2012

Fecal indicators in sand, sand contact, and risk of enteric illness among beachgoers

Christopher D. Heaney; Elizabeth Sams; Alfred P. Dufour; Kristen P. Brenner; Richard A. Haugland; Eunice C. Chern; Steve Wing; Stephen W. Marshall; David C. Love; Marc L. Serre; Rachel T. Noble; Timothy J. Wade

Background: Beach sand can harbor fecal indicator organisms and pathogens, but enteric illness risk associated with sand contact remains unclear. Methods: In 2007, visitors at 2 recreational marine beaches were asked on the day of their visit about sand contact. Ten to 12 days later, participants answered questions about health symptoms since the visit. F+ coliphage, Enterococcus, Bacteroidales, fecal Bacteroides, and Clostridium spp. in wet sand were measured using culture and molecular methods. Results: We analyzed 144 wet sand samples and completed 4999 interviews. Adjusted odds ratios (aORs) were computed, comparing those in the highest tertile of fecal indicator exposure with those who reported no sand contact. Among those digging in sand compared with those not digging in sand, a molecular measure of Enterococcus spp. (calibrator cell equivalents/g) in sand was positively associated with gastrointestinal (GI) illness (aOR = 2.0 [95% confidence interval (CI) = 1.2–3.2]) and diarrhea (2.4 [1.4–4.2]). Among those buried in sand, point estimates were greater for GI illness (3.3 [1.3–7.9]) and diarrhea (4.9 [1.8–13]). Positive associations were also observed for culture-based Enterococcus (colony-forming units/g) with GI illness (aOR digging = 1.7 [1.1–2.7]) and diarrhea (2.1 [1.3–3.4]). Associations were not found among nonswimmers with sand exposure. Conclusions: We observed a positive relationship between sand-contact activities and enteric illness as a function of concentrations of fecal microbial pollution in beach sand.


Environmental Science & Technology | 2011

Veterinary drug residues in seafood inspected by the European Union, United States, Canada, and Japan from 2000 to 2009.

David C. Love; Sarah O. Rodman; Roni A. Neff; Keeve E. Nachman

Veterinary drugs are used to treat or prevent a wide array of production-related diseases in aquaculture. Residues of these drugs in seafood products may pose risks to consumers, prompting governments to set drug residue tolerance levels and inspect seafood for violations of these standards. This study characterizes veterinary drug inspection policies and violations among four inspecting bodies (European Union (E.U.), United States (U.S.), Canada, and Japan), using government-collected veterinary drug violation data from 2000 to 2009. Most veterinary drug violations were detected in species that are commonly farm-raised. Asian seafood products, including shrimp and prawns, catfish (or fish sold as catfish), crab, tilapia, eel, and Chilean salmon were most frequently in violation of veterinary drug residue standards. Vietnam had the greatest number of violations among exporting countries. Concentrations of most veterinary drugs in seafood found in violation did not differ between inspecting bodies that reported drug concentrations. Transparency in seafood inspection reporting varied widely among inspecting bodies. Estimation of violations in the untested fraction of seafood was precluded by a lack of information from inspecting bodies regarding the distinction between targeted and random sampling. Increased transparency could facilitate a more rigorous characterization of public health risks from consuming imported seafood.


Environmental Science & Technology | 2010

Human virus and bacteriophage inactivation in clear water by simulated sunlight compared to bacteriophage inactivation at a southern California beach.

David C. Love; Andrea I. Silverman; Kara L. Nelson

Few quantitative data exist on human virus inactivation by sunlight and the relationship between human and indicator viruses under sunlit conditions. We investigated the effects of sunlight on human viruses (adenovirus type 2, poliovirus type 3) and bacteriophages (MS2, Q-Beta SP, Fi, M13, PRD1, Phi-X174, and coliphages isolated from Avalon Bay, California). Viruses were inoculated into phosphate buffered saline or seawater, exposed to a laboratory solar simulator for ≤12 h, and enumerated by double agar layer or cell culture to derive first-order inactivation rate constants (k(obs), h(-1)). The viruses most resistant to sunlight were adenovirus type 2 (k(obs)= 0.59 ± 0.04 h(-1)) and bacteriophage MS2 (k(obs)= 0.43 ± 0.02 h(-1)), which suggests MS2 may be a conservative indicator for sunlight resistant human viruses in clear water when sunlight inactivation is the main removal mechanism. Reasonable agreement was observed between somatic coliphage inactivation rates measured in the solar simulator (k(mean) = 1.81 h(-1)) and somatic coliphages measured in the surf zone during a field campaign at Avalon Bay during similar sunlight intensity (k = 0.75 h(-1) at log-RMSE minimum; k(range) = 0.54 h(-1) to >1.88 h(-1); Boehm, A. B. et al. Environ. Sci. Technol. 2009, 43, (21), 8046-8052). Hence, measuring sunlight inactivation rates of viruses in the laboratory can be used to estimate inactivation in the environment under similar sunlight and water quality conditions.


Environmental Science & Technology | 2011

Inactivation of MS2 Coliphage by Ferrous Ion and Zero-Valent Iron Nanoparticles

Jee Yeon Kim; Changha Lee; David C. Love; David L. Sedlak; Jeyong Yoon; Kara L. Nelson

This study demonstrates the inactivation of MS2 coliphage (MS2) by nano particulate zerovalent iron (nZVI) and ferrous ion (Fe[II]) in aqueous solution. For nZVI, the inactivation efficiency of MS2 under air-saturated conditions was greater than that observed under deaerated conditions, indicating that reactions associated with the oxidation of nZVI were mainly responsible for the MS2 inactivation. Under air-saturated conditions, the inactivation efficiency increased with decreasing pH for both nZVI and Fe(II), associated with the pH-dependent stability of Fe(II). Although the Fe(II) released from nZVI appeared to contribute significantly to the virucidal activity of nZVI, several findings suggest that the nZVI surfaces interacted directly with the MS2 phages, leading to their inactivation. First, the addition of 1,10-phenanthroline (a strong Fe(II)-chelating agent) failed to completely block the inactivation of MS2 by nZVI. Second, under deaerated conditions, a linear dose-log inactivation curve was still observed for nZVI. Finally, ELISA analysis indicated that nZVI caused more capsid damage than Fe(II).


Science of The Total Environment | 2012

Arsenic species in poultry feather meal

Keeve E. Nachman; George Raber; Kevin A. Francesconi; Ana Navas-Acien; David C. Love

Organoarsenical drugs are widely used in the production of broiler chickens in the United States. Feathers from these chickens are processed into a meal product that is used as an animal feed additive and as an organic fertilizer. Research conducted to date suggests that arsenical drugs, specifically roxarsone, used in poultry production result in the accumulation of arsenic in the keratinous material of poultry feathers. The use of feather meal product in the human food system and in other settings may result in human exposures to arsenic. Consequently, the presence and nature of arsenic in twelve samples of feather meal product from six US states and China were examined. Since arsenic toxicity is highly species-dependent, speciation analysis using HPLC/ICPMS was performed to determine the biological relevance of detected arsenic. Arsenic was detected in all samples (44-4100 μg kg(-1)) and speciation analyses revealed that inorganic forms of arsenic dominated, representing 37 - 83% of total arsenic. Roxarsone was not detected in the samples (<20 μg As kg(-1)). Feather meal products represent a previously unrecognized source of arsenic in the food system, and may pose additional risks to humans as a result of its use as an organic fertilizer and when animal waste is managed.


Environmental Science & Technology | 2012

Feather Meal: A Previously Unrecognized Route for Reentry into the Food Supply of Multiple Pharmaceuticals and Personal Care Products (PPCPs)

David C. Love; Rolf U. Halden; Meghan F. Davis; Keeve E. Nachman

Antimicrobials used in poultry production have the potential to bioaccumulate in poultry feathers but available data are scarce. Following poultry slaughter, feathers are converted by rendering into feather meal and sold as fertilizer and animal feed, thereby providing a potential pathway for reentry of drugs into the human food supply. We analyzed feather meal (n = 12 samples) for 59 pharmaceuticals and personal care products (PPCPs) using EPA method 1694 employing liquid chromatography tandem mass spectrometry (LC/MS/MS). All samples tested positive and six classes of antimicrobials were detected, with a range of two to ten antimicrobials per sample. Caffeine and acetaminophen were detected in 10 of 12 samples. A number of PPCPs were determined to be heat labile during laboratory simulation of the rendering process. Growth of wild-type E. coli in MacConkey agar was inhibited by sterilized feather meal (p = 0.01) and by the antimicrobial enrofloxacin (p < 0.0001) at levels found in feather meal. Growth of a drug-resistant E. coli strain was not inhibited by sterilized feather meal or enrofloxacin. This is the first study to detect antimicrobial residues in feather meal. Initial results suggest that more studies are needed to better understand potential risks posed to consumers by drug residues in feather meal.


Environmental Health Perspectives | 2010

Dose imprecision and resistance: free-choice medicated feeds in industrial food animal production in the United States.

David C. Love; Meghan F. Davis; Anna Bassett; Andrew Gunther; Keeve E. Nachman

Background Industrial food animal production employs many of the same antibiotics or classes of antibiotics that are used in human medicine. These drugs can be administered to food animals in the form of free-choice medicated feeds (FCMF), where animals choose how much feed to consume. Routine administration of these drugs to livestock selects for microorganisms that are resistant to medications critical to the treatment of clinical infections in humans. Objectives In this commentary, we discuss the history of medicated feeds, the nature of FCMF use with regard to dose delivery, and U.S. policies that address antimicrobial drug use in food animals. Discussion FCMF makes delivering a predictable, accurate, and intended dose difficult. Overdosing can lead to animal toxicity; underdosing or inconsistent dosing can result in a failure to resolve animal diseases and in the development of antimicrobial-resistant microorganisms. Conclusions The delivery of antibiotics to food animals for reasons other than the treatment of clinically diagnosed disease, especially via free-choice feeding methods, should be reconsidered.

Collaboration


Dive into the David C. Love's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jillian P. Fry

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Kara L. Nelson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Genello

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nora Pisanic

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Patrick Baron

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Roni A. Neff

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Ximin Li

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge