Patrick Baron
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick Baron.
Environmental Health Perspectives | 2013
Keeve E. Nachman; Patrick Baron; Georg Raber; Kevin A. Francesconi; Ana Navas-Acien; David C. Love
Background: Inorganic arsenic (iAs) causes cancer and possibly other adverse health outcomes. Arsenic-based drugs are permitted in poultry production; however, the contribution of chicken consumption to iAs intake is unknown. Objectives: We sought to characterize the arsenic species profile in chicken meat and estimate bladder and lung cancer risk associated with consuming chicken produced with arsenic-based drugs. Methods: Conventional, antibiotic-free, and organic chicken samples were collected from grocery stores in 10 U.S. metropolitan areas from December 2010 through June 2011. We tested 116 raw and 142 cooked chicken samples for total arsenic, and we determined arsenic species in 65 raw and 78 cooked samples that contained total arsenic at ≥ 10 µg/kg dry weight. Results: The geometric mean (GM) of total arsenic in cooked chicken meat samples was 3.0 µg/kg (95% CI: 2.5, 3.6). Among the 78 cooked samples that were speciated, iAs concentrations were higher in conventional samples (GM = 1.8 µg/kg; 95% CI: 1.4, 2.3) than in antibiotic-free (GM = 0.7 µg/kg; 95% CI: 0.5, 1.0) or organic (GM = 0.6 µg/kg; 95% CI: 0.5, 0.8) samples. Roxarsone was detected in 20 of 40 conventional samples, 1 of 13 antibiotic-free samples, and none of the 25 organic samples. iAs concentrations in roxarsone-positive samples (GM = 2.3 µg/kg; 95% CI: 1.7, 3.1) were significantly higher than those in roxarsone-negative samples (GM = 0.8 µg/kg; 95% CI: 0.7, 1.0). Cooking increased iAs and decreased roxarsone concentrations. We estimated that consumers of conventional chicken would ingest an additional 0.11 µg/day iAs (in an 82-g serving) compared with consumers of organic chicken. Assuming lifetime exposure and a proposed cancer slope factor of 25.7 per milligram per kilogram of body weight per day, this increase in arsenic exposure could result in 3.7 additional lifetime bladder and lung cancer cases per 100,000 exposed persons. Conclusions: Conventional chicken meat had higher iAs concentrations than did conventional antibiotic-free and organic chicken meat samples. Cessation of arsenical drug use could reduce exposure and the burden of arsenic-related disease in chicken consumers.
Lancet Infectious Diseases | 2012
Meghan F. Davis; Sally Ann Iverson; Patrick Baron; Aimee Vasse; Ellen K. Silbergeld; Ebbing Lautenbach; Daniel O. Morris
Although the role of pets in household transmission of meticillin-resistant Staphylococcus aureus (MRSA) has been examined previously, only minor attention has been given to the role of the abiotic household environment independent of, or in combination with, colonisation of pets and human beings to maintain transmission cycles of MRSA within the household. This report reviews published work about household transmission of S aureus and other staphylococci and describes contamination of household environmental surfaces and colonisation of pets and people. Household microbial communities might have a role in transfer of antimicrobial resistance genes and could be reservoirs for recolonisation of people, although additional research is needed regarding strategies for decontamination of household environments. Household-based interventions should be developed to control recurrent S aureus infections in the community, and coordination between medical and veterinary providers could be beneficial.
Applied and Environmental Microbiology | 2012
Meghan F. Davis; Patrick Baron; Lance B. Price; D'Ann L. Williams; Selvi Jeyaseelan; Ian R. Hambleton; Gregory B. Diette; Patrick N. Breysse; Meredith C. McCormack
ABSTRACT Staphylococcus aureus in home environments may serve as a reservoir for human colonization, making sampling of indoor surfaces relevant to exposure assessment. Using laboratory experiments and application to homes of asthmatic children in Barbados, we characterize microbiological methods adapted for settings with transportation delays between sampling and initiation of culture.
Environmental Health Perspectives | 2016
Keeve E. Nachman; David C. Love; Patrick Baron; Anne E. Nigra; Manuela Murko; Georg Raber; Kevin A. Francesconi; Ana Navas-Acien
Background: Use of nitarsone, an arsenic-based poultry drug, may result in dietary exposures to inorganic arsenic (iAs) and other arsenic species. Nitarsone was withdrawn from the U.S. market in 2015, but its use in other countries may continue. Objectives: We characterized the impact of nitarsone use on arsenic species in turkey meat and arsenic exposures among turkey consumers, and we estimated cancer risk increases from consuming turkey treated with nitarsone before its 2015 U.S. withdrawal. Methods: Turkey from three cities was analyzed for total arsenic, iAs, methylarsonate (MA), dimethylarsinate, and nitarsone, which were compared across label type and month of purchase. Turkey consumption was estimated from NHANES data to estimate daily arsenic exposures for adults and children 4–30 months of age and cancer risks among adult consumers. Results: Turkey meat from conventional producers not prohibiting nitarsone use showed increased mean levels of iAs (0.64 μg/kg) and MA (5.27 μg/kg) compared with antibiotic-free and organic meat (0.39 μg/kg and 1.54 μg/kg, respectively) and meat from conventional producers prohibiting nitarsone use (0.33 μg/kg and 0.28 μg/kg, respectively). Samples with measurable nitarsone had the highest mean iAs and MA (0.92 μg/kg and 10.96 μg/kg, respectively). Nitarsone was higher in October samples than in March samples, possibly resulting from increased summer use. Based on mean iAs concentrations in samples from conventional producers with no known policy versus policies prohibiting nitarsone, estimated lifetime daily consumption by an 80-kg adult, and a recently proposed cancer slope factor, we estimated that use of nitarsone by all turkey producers would result in 3.1 additional cases of bladder or lung cancer per 1,000,000 consumers. Conclusions: Nitarsone use can expose turkey consumers to iAs and MA. The results of our study support the U.S. Food and Drug Administration’s removal of nitarsone from the U.S. market and further support its removal from the global marketplace. Citation: Nachman KE, Love DC, Baron PA, Nigra AE, Murko M, Raber G, Francesconi KA, Navas-Acien A. 2017. Nitarsone, inorganic arsenic, and other arsenic species in turkey meat: exposure and risk assessment based on a 2014 U.S. market basket sample. Environ Health Perspect 125:363–369; http://dx.doi.org/10.1289/EHP225
Science of The Total Environment | 2014
Patrick Baron; David C. Love; Keeve E. Nachman
Pharmaceutical drugs are extensively used in industrial food animal production. We examined whether residues of veterinary antibiotics and other pharmaceuticals and personal care products (PPCPs) were detectable in a small market-basket sample of retail chicken (n=39), ground beef (n=3) and milk (n=3) samples. High-performance liquid chromatography and tandem mass spectrometry were used to assess the concentration of 59 PPCPs and their residues in animal products. All samples of ground beef, milk, and 14 chickens were analyzed individually, while an additional 25 chicken samples were pooled and analyzed in groups of five. The majority of PPCPs were not detected in meat and milk samples. Caffeine was detected in two of three milk samples (0.4 ng/mL, 2.0 ng/mL) and in 10 of 19 individual and pooled chicken samples (median: 18.6 ng/g, range: 6.1-28.8 ng/g). Acetaminophen was detected in three of three milk samples (median: 1.5 ng/mL, range: 1.4-2.1 ng/mL). Antibiotics in the tetracycline class were detected in two of three milk samples (median: 1.0 ng/mL, range: 0.1-2.0 ng/mL) and did not exceed regulatory residue tolerances of 300 ng/mL. There are no regulatory residue tolerances for caffeine or acetaminophen in animal products. The acetaminophen detections in milk, however, raise questions about extra-label and unapproved use of pharmaceutical drugs in food animal production, as this drug is not approved for use in lactating dairy cattle or any other type of food animal production. Additional studies are needed to confirm our finding of PPCPs in meat and dairy products.
Journal of Clinical Microbiology | 2016
Meghan F. Davis; Baofeng Hu; Karen C. Carroll; Warren B. Bilker; Pam Tolomeo; Valerie C. Cluzet; Patrick Baron; Jacqueline Ferguson; Daniel O. Morris; Shelley C. Rankin; Ebbing Lautenbach; Irving Nachamkin
ABSTRACT Two screening methods to detect staphylococcal colonization in humans were compared. Direct plating to CHROMagar (BD Diagnostics) was compared to a broth preenrichment followed by plating to Baird-Parker agar. The broth-enrichment method was comparable to CHROMagar for methicillin-resistant Staphylococcus aureas (MRSA) detection, but the enrichment method was optimum for recovery of coagulase-positive Staphylococcus spp.
Applied and Environmental Microbiology | 2017
Jonathan Shahbazian; P. D. Hahn; Shanna Ludwig; Jacqueline Ferguson; Patrick Baron; A. Christ; K. Spicer; Pam Tolomeo; A. M. Torrie; W. B. Bilker; V. C. Cluzet; B. Hu; Kathleen G. Julian; Irving Nachamkin; Shelley C. Rankin; Daniel O. Morris; Ebbing Lautenbach; Meghan F. Davis
ABSTRACT Patients with community-onset (CO) methicillin-resistant Staphylococcus aureus (MRSA) infections contribute to MRSA contamination of the home environment and may be reexposed to MRSA strains from this reservoir. This study evaluates One Health risk factors, which focus on the relationship between humans, animals, and the environment, for the increased prevalence of multiple antimicrobial-resistant MRSA isolates in the home environment. During a trial of patients with CO-MRSA infection, MRSA was isolated from the household environment at the baseline and 3 months later, following randomization of patients and household members to mupirocin-based decolonization therapy or an education control group. Up to two environmental MRSA isolates collected at each visit were tested. MRSA isolates were identified in 68% (65/95) of homes at the baseline (n = 104 isolates) and 51% (33/65) of homes 3 months later (n = 56 isolates). The rates of multidrug resistance (MDR) were 61% among isolates collected at the baseline and 55% among isolates collected at the visit 3 months later. At the baseline, 100% (14/14) of MRSA isolates from rural homes were MDR. While antimicrobial use by humans or pets was associated with an increased risk for the isolation of MDR MRSA from the environment, clindamycin use was not associated with an increased risk for the isolation of MDR MRSA. Incident low-level mupirocin-resistant MRSA strains were isolated at 3 months from 2 (5%) of 39 homes that were randomized to mupirocin treatment but none of the control homes. Among patients recently treated for a CO-MRSA infection, MRSA and MDR MRSA were common contaminants in the home environment. This study contributes to evidence that occupant use of antimicrobial drugs, except for clindamycin, is associated with MDR MRSA in the home environmental reservoir. (This study has been registered at ClinicalTrials.gov under registration no. NCT00966446.) IMPORTANCE MRSA is a common bacterial agent implicated in skin and soft tissue infections (SSTIs) in both community and health care settings. Patients with CO-MRSA infections contribute to environmental MRSA contamination in these settings and may be reexposed to MRSA strains from these reservoirs. People interact with natural and built environments; therefore, understanding the relationships between humans and animals as well as the characteristics of environmental reservoirs is important to advance strategies to combat antimicrobial resistance. Household interactions may influence the frequency and duration of exposure, which in turn may impact the duration of MRSA colonization or the probability for recurrent colonization and infection. Therefore, MRSA contamination of the home environment may contribute to human and animal recolonization and decolonization treatment failure. The aim of this study was to evaluate One Health risk factors that may be amenable to intervention and may influence the recovery of MDR and mupirocin resistance in CO-MRSA isolates.
PLOS ONE | 2016
Patrick Baron; Shannon Frattaroli
The objective of this study was to document and understand the perceptions and opinions of small-scale poultry producers who market directly to consumers about microbial food safety risks in the poultry supply chain. Between January and November 2014, we conducted semi-structured, in-depth interviews with a convenience sample of 16 owner-operators of Maryland direct-market commercial poultry farms. Three overarching thematic categories emerged from these interviews that describe: 1) characteristics of Maryland direct-market poultry production and processing; 2) microbial food safety risk awareness and risk management in small-scale poultry production, slaughter and processing; and 3) motivations for prioritizing food safety in the statewide direct-market poultry supply chain. Key informants provided valuable insights on many topics relevant to evaluating microbial food safety in the Maryland direct-market poultry supply chain, including: direct-market poultry production and processing practices and models, perspectives on issues related to food safety risk management, perspectives on direct-market agriculture economics and marketing strategies, and ideas for how to enhance food safety at the direct-market level of the Maryland poultry supply chain. The findings have policy implications and provide insights into food safety in small-scale commercial poultry production, processing, distribution and retail. In addition, the findings will inform future food safety research on the small-scale US poultry supply chain.
Environmental Health Perspectives | 2013
Keeve E. Nachman; Patrick Baron; Georg Raber; Kevin A. Francesconi; David C. Love
In our paper (Nachman et al. 2013) we focused on dietary arsenic exposure from the use of arsenic-based drugs in food animal production, specifically chicken. We thank Lasky for broadening the discussion on arsenic regulations for food to include federal agencies beyond the Food and Drug Administration (FDA). The results of our study (Nachman et al. 2013) indicate that the use of arsenic-based drugs increases the levels of inorganic arsenic in chicken meat. Based on these findings, we recommend banning the use of arsenic-based drugs in food animal production, which are under the jurisdiction of the FDA. It is important, however, to recognize the potential role that could be played by the U.S. Department of Agriculture (USDA) Food Safety and Inspection Service (FSIS) under its National Residue Program (NRP). Under its mandate, the NRP facilitates the monitoring of arsenic levels in poultry products and supports enforcement actions for animal products in violation of arsenic standards (USDA FSIS 2012). Unfortunately, the NRP faces constraints (in addition to those noted by Lasky) that limit its effectiveness (Silbergeld and Nachman 2008). The most important of these constraints is the current arsenic standard for meat, which was set before 1963 (FDA 1963) and does not account for recent epidemiologic research. In addition, the standard applies to total arsenic concentrations rather than to inorganic arsenic, the species of greatest health relevance. Because arsenic can be present in food in various forms that have widely varying toxicity, standards might need to be species specific. The U.S. Environmental Protection Agency (EPA) is currently revising its toxicological assessment for inorganic arsenic (U.S. EPA 2010) as part of its Integrated Risk Information System (IRIS) program. The purpose of this revision is to produce health-based guidance that can be useful in setting arsenic standards in different media (including foods) that reflect our current understanding of dose–response relationships between arsenic exposures and adverse health outcomes. To achieve this goal, coordination between the FDA, U.S. EPA, and NRP is essential. By applying appropriate standards and methods with adequate sensitivity for the arsenic species of interest, the NRP could play a central role in minimizing dietary exposure to arsenic through animal products. Although sale of roxarsone remains suspended in the United States, nitarsone, a chemically similar arsenical drug, continues to be sold (Zoetis 2013). Industry statements in the media have confirmed nitarsone use in the turkey industry (Aubrey 2013), and the USDA estimates of per capita turkey consumption are increasing (USDA 2013). Research is needed to characterize potential contributions of nitarsone to inorganic arsenic concentrations in turkey meat. For these reasons, monitoring efforts remain relevant. In the absence of regulations that limit inorganic arsenic in our foods, the banning of arsenic-based drugs would minimize dietary arsenic exposures in poultry consumers.
Environmental Health | 2014
Suzanne L. Pollard; D’Ann L. Williams; Patrick N. Breysse; Patrick Baron; Laura M. Grajeda; Robert H. Gilman; J. Jaime Miranda; William Checkley