Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David C. Slater is active.

Publication


Featured researches published by David C. Slater.


Nature | 1999

Discovery of a moon orbiting the asteroid 45 Eugenia

William Jon Merline; Laird M. Close; Christophe Dumas; Clark R. Chapman; Francois J. Roddier; F. Ménard; David C. Slater; G. Duvert; Christian R. Shelton; Thomas H. Morgan

Evidence for asteroidal satellites (moons) has been sought for decades, because the relative frequency of such satellites will bear on the collisional history of the asteroid belt and the Solar System, yet only one has been detected unambiguously. Here we report the discovery of a satellite of the asteroid 45 Eugenia, using an adaptive optics system on a ground-based telescope. The satellite has a diameter of about 13 km, and an orbital period of about 4.7 days with a separation of 1,190 km from Eugenia. Using a previously determined diameter for Eugenia, we estimate that its bulk density is about 1.2 g cm-3, which is similar to that of the C-type asteroid Mathilde. This implies that Eugenia, also a low-albedo C-type asteroid, may be a rubble pile, or composed of primitive, icy materials of low bulk density.


Science | 2016

The atmosphere of Pluto as observed by New Horizons

G. R. Gladstone; S. A. Stern; Kimberly Ennico; Catherine B. Olkin; H.A. Weaver; Leslie A. Young; Michael E. Summers; Darrell F. Strobel; David P. Hinson; Joshua A. Kammer; Alex H. Parker; Andrew Joseph Steffl; Ivan R. Linscott; Joel Wm. Parker; Andrew F. Cheng; David C. Slater; Maarten H. Versteeg; Thomas K. Greathouse; Kurt D. Retherford; H. Throop; Nathaniel J. Cunningham; W. W. Woods; Kelsi N. Singer; C. C. C. Tsang; Eric Schindhelm; Carey Michael Lisse; Michael L. Wong; Yuk L. Yung; Xun Zhu; W. Curdt

New Horizons unveils the Pluto system In July 2015, the New Horizons spacecraft flew through the Pluto system at high speed, humanitys first close look at this enigmatic system on the outskirts of our solar system. In a series of papers, the New Horizons team present their analysis of the encounter data downloaded so far: Moore et al. present the complex surface features and geology of Pluto and its large moon Charon, including evidence of tectonics, glacial flow, and possible cryovolcanoes. Grundy et al. analyzed the colors and chemical compositions of their surfaces, with ices of H2O, CH4, CO, N2, and NH3 and a reddish material which may be tholins. Gladstone et al. investigated the atmosphere of Pluto, which is colder and more compact than expected and hosts numerous extensive layers of haze. Weaver et al. examined the small moons Styx, Nix, Kerberos, and Hydra, which are irregularly shaped, fast-rotating, and have bright surfaces. Bagenal et al. report how Pluto modifies its space environment, including interactions with the solar wind and a lack of dust in the system. Together, these findings massively increase our understanding of the bodies in the outer solar system. They will underpin the analysis of New Horizons data, which will continue for years to come. Science, this issue pp. 1284, 10.1126/science.aad9189, 10.1126/science.aad8866, 10.1126/science.aae0030, & 10.1126/science.aad9045 Pluto’s atmosphere is cold, rarefied, and made mostly of nitrogen and methane, with layers of haze. INTRODUCTION For several decades, telescopic observations have shown that Pluto has a complex and intriguing atmosphere. But too little has been known to allow a complete understanding of its global structure and evolution. Major goals of the New Horizons mission included the characterization of the structure and composition of Pluto’s atmosphere, as well as its escape rate, and to determine whether Charon has a measurable atmosphere. RATIONALE The New Horizons spacecraft included several instruments that observed Pluto’s atmosphere, primarily (i) the Radio Experiment (REX) instrument, which produced near-surface pressure and temperature profiles; (ii) the Alice ultraviolet spectrograph, which gave information on atmospheric composition; and (iii) the Long Range Reconnaissance Imager (LORRI) and Multispectral Visible Imaging Camera (MVIC), which provided images of Pluto’s hazes. Together, these instruments have provided data that allow an understanding of the current state of Pluto’s atmosphere and its evolution. RESULTS The REX radio occultation determined Pluto’s surface pressure and found a strong temperature inversion, both of which are generally consistent with atmospheric profiles retrieved from Earth-based stellar occultation measurements. The REX data showed near-symmetry between the structure at ingress and egress, as expected from sublimation driven dynamics, so horizontal winds are expected to be weak. The shallow near-surface boundary layer observed at ingress may arise directly from sublimation. The Alice solar occultation showed absorption by methane and nitrogen and revealed the presence of the photochemical products acetylene and ethylene. The observed nitrogen opacity at high altitudes was lower than expected, which is consistent with a cold upper atmosphere. Such low temperatures imply an additional, but as yet unidentified, cooling agent. A globally extensive haze extending to high altitudes, and with numerous embedded thin layers, is seen in the New Horizons images. The haze has a bluish color, suggesting a composition of very small particles. The observed scattering properties of the haze are consistent with a tholin-like composition. Buoyancy waves generated by winds flowing over orography can produce vertically propagating compression and rarefaction waves that may be related to the narrow haze layers. Pluto’s cold upper atmosphere means atmospheric escape must occur via slow thermal Jeans’ escape. The inferred escape rate of nitrogen is ~10,000 times slower than predicted, whereas that of methane is about the same as predicted. The low nitrogen loss rate is consistent with an undetected Charon atmosphere but possibly inconsistent with sublimation/erosional features seen on Pluto’s surface, so that past escape rates may have been much larger at times. Capture of escaping methane and photochemical products by Charon, and subsequent surface chemical reactions, may contribute to the reddish color of its north pole. CONCLUSION New Horizons observations have revolutionized our understanding of Pluto’s atmosphere. The observations revealed major surprises, such as the unexpectedly cold upper atmosphere and the globally extensive haze layers. The cold upper atmosphere implies much lower escape rates of volatiles from Pluto than predicted and so has important implications for the volatile recycling and the long-term evolution of Pluto’s atmosphere. MVIC image of haze layers above Pluto’s limb. About 20 haze layers are seen from a phase angle of 147°. The layers typically extend horizontally over hundreds of kilometers but are not exactly horizontal. For example, white arrows on the left indicate a layer ~5 km above the surface, which has descended to the surface at the right. Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto’s atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto’s atmosphere to space. It is unclear whether the current state of Pluto’s atmosphere is representative of its average state—over seasonal or geologic time scales.


Science | 2010

LRO-LAMP observations of the LCROSS impact plume.

G. Randall Gladstone; Dana M. Hurley; Kurt D. Retherford; Paul D. Feldman; Wayne R. Pryor; Jean-Yves Chaufray; Maarten H. Versteeg; Thomas K. Greathouse; Andrew Joseph Steffl; Henry Blair Throop; Joel Wm. Parker; David E. Kaufmann; Anthony F. Egan; Michael W. Davis; David C. Slater; J. Mukherjee; Paul F. Miles; Amanda R. Hendrix; Anthony Colaprete; S. Alan Stern

Watering the Moon About a year ago, a spent upper stage of an Atlas rocket was deliberately crashed into a crater at the south pole of the Moon, ejecting a plume of debris, dust, and vapor. The goal of this event, the Lunar Crater Observation and Sensing Satellite (LCROSS) experiment, was to search for water and other volatiles in the soil of one of the coldest places on the Moon: the permanently shadowed region within the Cabeus crater. Using ultraviolet, visible, and near-infrared spectroscopy data from accompanying craft, Colaprete et al. (p. 463; see the news story by Kerr; see the cover) found evidence for the presence of water and other volatiles within the ejecta cloud. Schultz et al. (p. 468) monitored the different stages of the impact and the resulting plume. Gladstone et al. (p. 472), using an ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO), detected H2, CO, Ca, Hg, and Mg in the impact plume, and Hayne et al. (p. 477) measured the thermal signature of the impact and discovered that it had heated a 30 to 200 square-meter region from ∼40 kelvin to at least 950 kelvin. Paige et al. (p. 479) mapped cryogenic zones predictive of volatile entrapment, and Mitrofanov et al. (p. 483) used LRO instruments to confirm that surface temperatures in the south polar region persist even in sunlight. In all, about 155 kilograms of water vapor was emitted during the impact; meanwhile, the LRO continues to orbit the Moon, sending back a stream of data to help us understand the evolution of its complex surface structures. A controlled spacecraft impact into a crater in the lunar south pole plunged through the lunar soil, revealing water and other volatiles. On 9 October 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) sent a kinetic impactor to strike Cabeus crater, on a mission to search for water ice and other volatiles expected to be trapped in lunar polar soils. The Lyman Alpha Mapping Project (LAMP) ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO) observed the plume generated by the LCROSS impact as far-ultraviolet emissions from the fluorescence of sunlight by molecular hydrogen and carbon monoxide, plus resonantly scattered sunlight from atomic mercury, with contributions from calcium and magnesium. The observed light curve is well simulated by the expansion of a vapor cloud at a temperature of ~1000 kelvin, containing ~570 kilograms (kg) of carbon monoxide, ~140 kg of molecular hydrogen, ~160 kg of calcium, ~120 kg of mercury, and ~40 kg of magnesium.


Space Science Reviews | 2008

New Horizons: Anticipated Scientific Investigations at the Pluto System

Leslie A. Young; S. Alan Stern; Harold A. Weaver; Fran Bagenal; Richard P. Binzel; Bonnie J. Buratti; Andrew F. Cheng; Dale P. Cruikshank; G. Randall Gladstone; William M. Grundy; David P. Hinson; Mihaly Horanyi; Donald E. Jennings; Ivan R. Linscott; D. J. McComas; William B. McKinnon; Ralph L. McNutt; J. M. Moore; Scott L. Murchie; Catherine B. Olkin; Carolyn C. Porco; Harold J. Reitsema; D. C. Reuter; John R. Spencer; David C. Slater; Darrell F. Strobel; Michael E. Summers; G. Leonard Tyler

The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth).


Space Science Reviews | 2007

Alice : The rosetta Ultraviolet Imaging Spectrograph

S. A. Stern; David C. Slater; John Scherrer; John Stone; Maarten H. Versteeg; Michael F. A’Hearn; Paul D. Feldman; Michel C. Festou; Joel Wm. Parker; Oswald H. W. Siegmund

We describe the design, performance and scientific objectives of the NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy. It will be the first UV spectrograph to study a comet at close range. It is designed to obtain spatially-resolved spectra of Rosetta mission targets in the 700–2050 Å spectral band with a spectral resolution between 8 Å and 12 Å for extended sources that fill its ∼0.05^ × 6.0^ field-of-view. ALICE employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a toroidal concave holographic reflection grating. The microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr and CsI) and employs a two-dimensional delay-line readout array. The instrument is controlled by an internal microprocessor. During the prime Rosetta mission, ALICE will characterize comet 67P/Churyumov-Gerasimenkos coma, its nucleus, and nucleus/coma coupling; during cruise to the comet, ALICE will make observations of the missions two asteroid flyby targets and of Mars, its moons, and of Earths moon. ALICE has already successfully completed the in-flight commissioning phase and is operating well in flight. It has been characterized in flight with stellar flux calibrations, observations of the Moon during the first Earth fly-by, and observations of comet C/2002 T7 (LINEAR) in 2004 and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing campaign.


The Astrophysical Journal | 2000

The Discovery of Argon in Comet C/1995 O1 (Hale-Bopp)

S. A. Stern; David C. Slater; Michel C. Festou; J. Wm. Parker; G. R. Gladstone; Michael F. A’Hearn; Erik Wilkinson

On 1997 March 30.14, we observed the EUV spectrum of the bright comet C/1995 O1 (Hale-Bopp) at the time of its perihelion, using our Extreme Ultraviolet Spectrograph sounding-rocket telescope/spectrometer. The spectra reveal the presence H Lyβ, O+, and, most notably, argon. Modeling of the retrieved Ar production rates indicates that comet Hale-Bopp is enriched in Ar relative to cosmogonic expectations. This in turn indicates that Hale-Bopps deep interior has never been exposed to the 35-40 K temperatures necessary to deplete the comets primordial argon supply.


The Astronomical Journal | 2011

Ultraviolet Discoveries at Asteroid (21) Lutetia by the Rosetta Alice Ultraviolet Spectrograph

S. A. Stern; J. Wm. Parker; Paul D. Feldman; Harold A. Weaver; Andrew Joseph Steffl; Michael F. A’Hearn; Lori Michelle Feaga; Emma M. Birath; A. Graps; J.-L. Bertaux; David C. Slater; Nathaniel J. Cunningham; Maarten H. Versteeg; John Scherrer

The NASA Alice ultraviolet (UV) imaging spectrograph on board the ESA Rosetta comet orbiter successfully conducted a series of flyby observations of the large asteroid (21) Lutetia in the days surrounding Rosettas closest approach on 2010 July 10. Observations included a search for emission lines from gas, and spectral observations of the Lutetias surface reflectance. No emissions from gas around Lutetia were observed. Regarding the surface reflectance, we found that Lutetia has a distinctly different albedo and slope than both the asteroid (2867) Steins and Earths moon, the two most analogous objects studied in the far ultraviolet (FUV). Further, Lutetias ~10% geometric albedo near 1800 A is significantly lower than its 16%-19% albedo near 5500 A. Moreover, the FUV albedo shows a precipitous drop (to ~4%) between 1800 A and 1600 A, representing the strongest spectral absorption feature observed in Lutetias spectrum at any observed wavelength. Our surface reflectance fits are not unique but are consistent with a surface dominated by an EH5 chondrite, combined with multiple other possible surface constituents, including anorthite, water frost, and SO2 frost or a similar mid-UV absorber. The water frost identification is consistent with some data sets but inconsistent with others. The anorthite (feldspar) identification suggests that Lutetia is a differentiated body.


Science | 2007

Jupiter's nightside airglow and aurora

G. Randall Gladstone; S. Alan Stern; David C. Slater; Maarten H. Versteeg; Michael W. Davis; Kurt D. Retherford; Leslie A. Young; Andrew Joseph Steffl; Henry Blair Throop; Joel Wm. Parker; Harold A. Weaver; Andrew F. Cheng; Glenn S. Orton; John Clarke; J. D. Nichols

Observations of Jupiters nightside airglow (nightglow) and aurora obtained during the flyby of the New Horizons spacecraft show an unexpected lack of ultraviolet nightglow emissions, in contrast to the case during the Voyager flybys in 1979. The flux and average energy of precipitating electrons generally decrease with increasing local time across the nightside, consistent with a possible source region along the dusk flank of Jupiters magnetosphere. Visible emissions associated with the interaction of Jupiter and its satellite Io extend to a surprisingly high altitude, indicating localized low-energy electron precipitation. These results indicate that the interaction between Jupiters upper atmosphere and near-space environment is variable and poorly understood; extensive observations of the day side are no guide to what goes on at night.


Advances in Space Research | 1998

ALICE~AN ULTRAVIOLET IMAGING SPECTROMETER FOR THE ROSETTA ORBITER

S.A. Stern; David C. Slater; W. Gibson; John Scherrer; Michael F. A'Hearn; Paul D. Feldman; Michel C. Festou

We describe the design concept and scientific objectives of ALICE: a lightweight (2.2 kg), low-power (2.9 W), and low-cost UV imaging spectrometer for the ESA Rosetta Orbiter. Ultraviolet spectroscopy is a powerful tool for studying astrophysical objects, and has been applied with great success to the study of comets. ALICE is designed to obtain far-UV (FUV) spectra of the Rosetta comet nucleus and coma in the 700–2050 A bandpass; it will achieve spectral resolutions between 9.8 and 12.5 A across the bandpass for extended sources that fill its 0.1 × 6.0 deg.2 field-of-view. It employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a concave holographic reflection grating. The imaging microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr and Csl) and a 2-D wedge-and-strip readout array. ALICE will deepen the Rosetta Orbiter remote sensing investigation through its ability to detect and measure (1) noble gases; (2) atomic abundances in the coma; (3) major ion abundances in the tail; and (4) production rates, variability, and structure of H2O and CO/CO2 molecules that generate cometary activity. In addition, ALICE will allow an investigation of the FUV properties of the nucleus and its solid grains, and can provide unique information during asteroid flybys and at en-route planetary encounters, most notably, Mars.


Astronomy and Astrophysics | 2010

Ultraviolet and visible photometry of asteroid (21) Lutetia using the Hubble Space Telescope

Harold A. Weaver; Paul D. Feldman; William Jon Merline; Maximilian J. Mutchler; Michael F. A'Hearn; Lori Michelle Feaga; Joel Wm. Parker; David C. Slater; Andrew Joseph Steffl; Clark R. Chapman; Jack D. Drummond; S. A. Stern

Context. The asteroid (21) Lutetia is the target of a planned close encounter by the Rosetta spacecraft in July 2010. To prepare for that flyby, Lutetia has been extensively observed by a variety of astronomical facilities. Aims. We used the Hubble Space Telescope (HST) to determine the albedo of Lutetia over a wide wavelength range, extending from ~1500 A° to ~7000 A°. Methods. Using data from a variety of HST filters and a ground-based visible light spectrum, we employed synthetic photometry techniques to derive absolute fluxes for Lutetia. New results from ground-based measurements of Lutetias size and shape were used to convert the absolute fluxes into albedos. Results. We present our best model for the spectral energy distribution of Lutetia over the wavelength range 1200-8000 A°. There appears to be a steep drop in the albedo (by a factor of ~2) for wavelengths shorter than ~3000 A°. Nevertheless, the far ultraviolet albedo of Lutetia (~10%) is considerably larger than that of typical C-chondrite material (~4%). The geometric albedo at 5500 A° is 16.5 ± 1%. Conclusions. Lutetias reflectivity is not consistent with a metal-dominated surface at infrared or radar wavelengths, and its albedo at all wavelengths (UV-visibile-IR-radar) is larger than observed for typical primitive, chondritic material. We derive a relatively high FUV albedo of ~10%, a result that will be tested by observations with the Alice spectrograph during the Rosetta flyby of Lutetia in July 2010.

Collaboration


Dive into the David C. Slater's collaboration.

Top Co-Authors

Avatar

S. Alan Stern

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Joel Wm. Parker

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Maarten H. Versteeg

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Andrew Joseph Steffl

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michael W. Davis

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kurt D. Retherford

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

G. Randall Gladstone

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Paul D. Feldman

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Thomas K. Greathouse

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Harold A. Weaver

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge