Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Camann is active.

Publication


Featured researches published by David Camann.


Environmental Health Perspectives | 2004

Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits

Jay H. Lubin; Joanne S. Colt; David Camann; Scott Davis; James R. Cerhan; Richard K. Severson; Leslie Bernstein; Patricia Hartge

Quantitative measurements of environmental factors greatly improve the quality of epidemiologic studies but can pose challenges because of the presence of upper or lower detection limits or interfering compounds, which do not allow for precise measured values. We consider the regression of an environmental measurement (dependent variable) on several covariates (independent variables). Various strategies are commonly employed to impute values for interval-measured data, including assignment of one-half the detection limit to nondetected values or of “fill-in” values randomly selected from an appropriate distribution. On the basis of a limited simulation study, we found that the former approach can be biased unless the percentage of measurements below detection limits is small (5–10%). The fill-in approach generally produces unbiased parameter estimates but may produce biased variance estimates and thereby distort inference when 30% or more of the data are below detection limits. Truncated data methods (e.g., Tobit regression) and multiple imputation offer two unbiased approaches for analyzing measurement data with detection limits. If interest resides solely on regression parameters, then Tobit regression can be used. If individualized values for measurements below detection limits are needed for additional analysis, such as relative risk regression or graphical display, then multiple imputation produces unbiased estimates and nominal confidence intervals unless the proportion of missing data is extreme. We illustrate various approaches using measurements of pesticide residues in carpet dust in control subjects from a case–control study of non-Hodgkin lymphoma.


Environmental Health Perspectives | 2004

Prenatal Insecticide Exposures and Birth Weight and Length among an Urban Minority Cohort

Robin M. Whyatt; Virginia Rauh; Dana B. Barr; David Camann; Howard Andrews; Robin Garfinkel; Lori Hoepner; Diurka Diaz; Jessica Dietrich; Andria Reyes; Deliang Tang; Patrick L. Kinney; Frederica P. Perera

We reported previously that insecticide exposures were widespread among minority women in New York City during pregnancy and that levels of the organophosphate chlorpyrifos in umbilical cord plasma were inversely associated with birth weight and length. Here we expand analyses to include additional insecticides (the organophosphate diazinon and the carbamate propoxur), a larger sample size (n = 314 mother–newborn pairs), and insecticide measurements in maternal personal air during pregnancy as well as in umbilical cord plasma at delivery. Controlling for potential confounders, we found no association between maternal personal air insecticide levels and birth weight, length, or head circumference. For each log unit increase in cord plasma chlorpyrifos levels, birth weight decreased by 42.6 g [95% confidence interval (CI), −81.8 to −3.8, p = 0.03] and birth length decreased by 0.24 cm (95% CI, −0.47 to −0.01, p = 0.04). Combined measures of (ln)cord plasma chlorpyrifos and diazinon (adjusted for relative potency) were also inversely associated with birth weight and length (p < 0.05). Birth weight averaged 186.3 g less (95% CI, −375.2 to −45.5) among newborns with the highest compared with lowest 26% of exposure levels (p = 0.01). Further, the associations between birth weight and length and cord plasma chlorpyrifos and diazinon were highly significant (p ≤ 0.007) among newborns born before the 2000–2001 U.S. Environmental Protection Agency’s regulatory actions to phase out residential use of these insecticides. Among newborns born after January 2001, exposure levels were substantially lower, and no association with fetal growth was apparent (p > 0.8). The propoxur metabolite 2-isopropoxyphenol in cord plasma was inversely associated with birth length, a finding of borderline significance (p = 0.05) after controlling for chlorpyrifos and diazinon. Results indicate that prenatal chlorpyrifos exposures have impaired fetal growth among this minority cohort and that diazinon exposures may have contributed to the effects. Findings support recent regulatory action to phase out residential uses of the insecticides.


Environmental Health Perspectives | 2006

Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children.

Frederica P. Perera; Virginia Rauh; Robin M. Whyatt; Wei Yann Tsai; Deliang Tang; Diurka Diaz; Lori Hoepner; Dana B. Barr; Yi Hsuan Tu; David Camann; Patrick L. Kinney

Our prospective cohort study of nonsmoking African-American and Dominican mothers and children in New York City is evaluating the role of prenatal exposure to urban pollutants, including polycyclic aromatic hydrocarbons (PAHs), environmental tobacco smoke (ETS), and pesticides, in the pathogenesis of neurobehavioral disorders. We used the Bayley Scales of Infant Development to evaluate the effects on child mental and psychomotor development of prenatal exposure to airborne PAHs monitored during pregnancy by personal air sampling. Behavioral development was assessed by the Child Behavior Checklist. We adjusted for potential confounders including sociodemographic factors and prenatal exposure to ETS and chlorpyrifos. Prenatal exposure to PAHs was not associated with psychomotor development index or behavioral problems. However, high prenatal exposure to PAHs (upper quartile) was associated with lower mental development index at age 3 [β= –5.69; 95% confidence interval (CI), –9.05 to –2.33; p < 0.01]. The odds of cognitive developmental delay were also significantly greater for children with high prenatal exposure (odds ratio = 2.89; 95% CI, 1.33 to 6.25; p = 0.01). General estimated equation analysis showed a significant age × PAH effect on mental development (p = 0.01), confirming the age-specific regression findings. Further adjustment for lead did not alter the relationships. There were no differences in effect sizes by ethnicity. The results require confirmation but suggest that environmental PAHs at levels recently encountered in New York City air may adversely affect children’s cognitive development at 3 years of age, with implications for school performance.


Pediatrics | 2009

Prenatal Airborne Polycyclic Aromatic Hydrocarbon Exposure and Child IQ at Age 5 Years

Frederica P. Perera; Zhigang Li; Robin M. Whyatt; Lori Hoepner; Shuang Wang; David Camann; Virginia Rauh

OBJECTIVE: This study evaluated the relationship between prenatal exposure to airborne polycyclic aromatic hydrocarbons (PAHs) and child intelligence. METHODS: Children of nonsmoking black or Dominican-American women residing in New York City were monitored from in utero to 5 years of age, with determination of prenatal PAH exposure through personal air monitoring for the mothers during pregnancy. At 5 years of age, intelligence was assessed for 249 children by using the Wechsler Preschool and Primary Scale of Intelligence-Revised. Multivariate linear regression models were used to estimate and to test the associations between prenatal PAH exposure and IQ. RESULTS: After adjustment for maternal intelligence, quality of the home caretaking environment, environmental tobacco smoke exposure, and other potentially confounding factors, high PAH levels (above the median of 2.26 ng/m3) were inversely associated with full-scale IQ (P = .007) and verbal IQ (P = .003) scores. Children in the high-exposure group had full-scale and verbal IQ scores that were 4.31 and 4.67 points lower, respectively, than those of less-exposed children (≤2.26 ng/m3). The associations between logarithmically transformed, continuous, PAH levels and these IQ measures also were significant (full-scale IQ: β = −3.00; P = .009; verbal IQ: β = −3.53; P = .002). CONCLUSION: These results provide evidence that environmental PAHs at levels encountered in New York City air can affect childrens IQ adversely.


Environmental Health Perspectives | 2008

Characterization of Phthalate Exposure among Pregnant Women Assessed by Repeat Air and Urine Samples

Jennifer J. Adibi; Robin M. Whyatt; Paige L. Williams; Antonia M. Calafat; David Camann; Robert F. Herrick; Heather H. Nelson; Hari K. Bhat; Frederica P. Perera; Manori J. Silva; Russ Hauser

Background Although urinary concentrations of phthalate metabolites are frequently used as biomarkers in epidemiologic studies, variability during pregnancy has not been characterized. Methods We measured phthalate metabolite concentrations in spot urine samples collected from 246 pregnant Dominican and African-American women. Twenty-eight women had repeat urine samples collected over a 6-week period. We also analyzed 48-hr personal air samples (n = 96 women) and repeated indoor air samples (n = 32 homes) for five phthalate diesters. Mixed-effects models were fit to evaluate reproducibility via intraclass correlation coefficients (ICC). We evaluated the sensitivity and specificity of using a single specimen versus repeat samples to classify a woman’s exposure in the low or high category. Results Phthalates were detected in 85–100% of air and urine samples. ICCs for the unadjusted urinary metabolite concentrations ranged from 0.30 for mono-ethyl phthalate to 0.66 for monobenzyl phthalate. For indoor air, ICCs ranged from 0.48 [di-2-ethylhexyl phthalate (DEHP)] to 0.83 [butylbenzyl phthalate (BBzP)]. Air levels of phthalate diesters correlated with their respective urinary metabolite concentrations for BBzP (r = 0.71), di-isobutyl phthalate (r = 0.44), and diethyl phthalate (DEP; r = 0.39). In women sampled late in pregnancy, specific gravity appeared to be more effective than creatinine in adjusting for urine dilution. Conclusions Urinary concentrations of DEP and DEHP metabolites in pregnant women showed lower reproducibility than metabolites for di-n-butyl phthalate and BBzP. A single indoor air sample may be sufficient to characterize phthalate exposure in the home, whereas urinary phthalate biomarkers should be sampled longitudinally during pregnancy to minimize exposure misclassification.


Science of The Total Environment | 2009

Polybrominated diphenyl ether (PBDE) concentrations in house dust are related to hormone levels in men

John D. Meeker; Paula I. Johnson; David Camann; Russ Hauser

Despite documented widespread human exposure to polybrominated diphenyl ethers (PBDEs) through dietary intake and contact with or inhalation of indoor dust, along with growing laboratory evidence for altered endocrine function following exposure, human studies of PBDE exposure and endocrine effects remain limited. We conducted a preliminary study within an ongoing study on the impact of environmental exposures on male reproductive health. We measured serum hormone levels and PBDE concentrations (BDE 47, 99 and 100) in house dust from 24 men recruited through a US infertility clinic. BDE 47 and 99 were detected in 100% of dust samples, and BDE 100 was detected in 67% of dust samples, at concentrations similar to those reported in previous US studies. In multivariable regression models adjusted for age and BMI, there was a statistically significant inverse relationship between dust PBDE concentrations and free androgen index. Dust PBDE concentrations were also strongly and inversely associated with luteinizing hormone (LH) and follicle stimulating hormone (FSH), and positively associated with inhibin B and sex hormone binding globulin (SHBG). Finally, consistent with limited recent human studies of adults, PBDEs were positively associated with free T4. In conclusion, the present study provides compelling evidence of altered hormone levels in relation to PBDE exposures estimated as concentrations in house dust, and that house dust is an important source of human PBDE exposure, but more research is urgently needed.


Breast Cancer Research and Treatment | 2002

The Long Island Breast Cancer Study Project: Description of a multi-institutional collaboration to identify environmental risk factors for breast cancer

Marilie D. Gammon; Alfred I. Neugut; Regina M. Santella; Susan L. Teitelbaum; Julie A. Britton; Mary Beth Terry; Sybil M. Eng; Mary S. Wolff; Steven D. Stellman; Geoffrey C. Kabat; Bruce Levin; H. Leon Bradlow; Maureen Hatch; Jan Beyea; David Camann; Martin Trent; Ruby T. Senie; Gail C. Garbowski; Carla Maffeo; Pat Montalvan; Ger trud S. Berkowitz; Margaret Kemeny; Marc L. Citron; Freya Schnabel; Allan Schuss; Steven I. Hajdu; Vincent Vincguerra; Gwen W. Collman; G. Iris Obrams

The Long Island Breast Cancer Study Project is a federally mandated, population-based case-control study to determine whether breast cancer risk among women in the counties of Nassau and Suffolk, NY, is associated with selected environmental exposures, assessed by blood samples, self-reports, and environmental home samples. This report describes the collaborative projects background, rationale, methods, participation rates, and distributions of known risk factors for breast cancer by case-control status, by blood donation, and by availability of environmental home samples. Interview response rates among eligible cases and controls were 82.1% (n, = 1,508) and 62.8% (n = 1,556), respectively. Among case and control respondents who completed the interviewer-administered questionnaire, 98.2 and 97.6% self-completed the food frequency questionnaire; 73.0 and 73.3% donated a blood sample; and 93.0 and 83.3% donated a urine sample. Among a random sample of case and control respondents who are long-term residents, samples of dust (83.6 and 83.0%); soil (93.5 and 89.7%); and water (94.3 and 93.9%) were collected. Established risk factors for breast cancer that were found to increase risk among Long Island women include lower parity, late age at first birth, little or no breast feeding, and family history of breast cancer. Factors that were found to be associated with a decreased likelihood that a respondent would donate blood include increasing age and past smoking; factors associated with an increased probability include white or other race, alcohol use, ever breastfed, ever use of hormone replacement therapy, ever use of oral contraceptives, and ever had a mammogram. Long-term residents (defined as 15+ years in the interview home) with environmental home samples did not differ from other long-term residents, although there were a number of differences in risk factor distributions between long-term residents and other participants, as anticipated.


Environmental Health Perspectives | 2010

Prenatal Exposure to Airborne Polycyclic Aromatic Hydrocarbons and Children's Intelligence at 5 Years of Age in a Prospective Cohort Study in Poland

Susan Edwards; Wieslaw Jedrychowski; Maria Butscher; David Camann; Agnieszka Kieltyka; Elzbieta Mroz; Elzbieta Flak; Zhigang Li; Shuang Wang; Virginia Rauh; Frederica P. Perera

Background In this prospective cohort study of Caucasian mothers and children in Krakow, Poland, we evaluated the role of prenatal exposure to urban air pollutants in the pathogenesis of neurobehavioral disorders. Objectives The objective of this study was to investigate the relationship between prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child intelligence at 5 years of age, controlling for potential confounders suspected to play a role in neurodevelopment. Methods A cohort of pregnant, healthy, nonsmoking women was enrolled in Krakow, Poland, between 2001 and 2006. During pregnancy, participants were invited to complete a questionnaire and undergo 48-hr personal air monitoring to estimate their babies’ exposure, and to provide a blood sample and/or a cord blood sample at the time of delivery. Two hundred fourteen children were followed through 5 years of age, when their nonverbal reasoning ability was assessed using the Raven Coloured Progressive Matrices (RCPM). Results We found that higher (above the median of 17.96 ng/m3) prenatal exposure to airborne PAHs (range, 1.8–272.2 ng/m3) was associated with decreased RCPM scores at 5 years of age, after adjusting for potential confounding variables (n = 214). Further adjusting for maternal intelligence, lead, or dietary PAHs did not alter this association. The reduction in RCPM score associated with high airborne PAH exposure corresponded to an estimated average decrease of 3.8 IQ points. Conclusions These results suggest that prenatal exposure to airborne PAHs adversely affects children’s cognitive development by 5 years of age, with potential implications for school performance. They are consistent with a recent finding in a parallel cohort in New York City.


Environmental Health Perspectives | 2012

Prenatal Polycyclic Aromatic Hydrocarbon (PAH) Exposure and Child Behavior at Age 6–7 Years

Frederica Perera; Deliang Tang; Shuang Wang; Julia Vishnevetsky; Bingzhi Zhang; Diurka Diaz; David Camann; Virginia Rauh

Background: Airborne polycyclic aromatic hydrocarbons (PAH) are widespread urban air pollutants from fossil fuel burning and other combustion sources. We previously reported that a broad spectrum of combustion-related DNA adducts in cord blood was associated with attention problems at 6–7 years of age in the Columbia Center for Children’s Environmental Health (CCCEH) longitudinal cohort study. Objectives: We evaluated the relationship between behavioral problems and two different measures of prenatal exposure—both specific to PAH—in the same cohort. Methods: Children of nonsmoking African-American and Dominican women in New York City (NYC) were followed from in utero to 6–7 years. Prenatal PAH exposure was estimated by personal air monitoring of the mothers during pregnancy as well as by the measurement of DNA adducts specific to benzo[a]pyrene (BaP), a representative PAH, in maternal and cord blood. At 6–7 years of age, child behavior was assessed using the Child Behavior Checklist (CBCL) (n = 253). Generalized linear models were used to test the association between prenatal PAH exposure and behavioral outcomes. Results: In multivariate analyses, high prenatal PAH exposure, whether characterized by personal air monitoring (greater than the median of 2.27 ng/m3) or maternal and cord adducts (detectable or higher), was positively associated with symptoms of Anxious/Depressed and Attention Problems (p ≤ 0.05). Conclusion: These results provide additional evidence that environmental levels of PAH encountered in NYC air can adversely affect child behavior.


Environmental Health Perspectives | 2004

Estimated risk for altered fetal growth resulting from exposure to fine particles during pregnancy: an epidemiologic prospective cohort study in Poland

Wieslaw Jedrychowski; Ivona Bendkowska; Elzbieta Flak; Agnieszka Penar; Ryszard Jacek; Irena Kaim; John D. Spengler; David Camann; Frederica P. Perera

The purpose of this study was to estimate exposure of pregnant women in Poland to fine particulate matter [≤2.5 μm in diameter (PM2.5)] and to assess its effect on the birth outcomes. The cohort consisted of 362 pregnant women who gave birth between 34 and 43 weeks of gestation. The enrollment included only nonsmoking women with singleton pregnancies, 18–35 years of age, who were free from chronic diseases such as diabetes and hypertension. PM2.5 was measured by personal air monitoring over 48 hr during the second trimester of pregnancy. All assessed birth effects were adjusted in multiple linear regression models for potential confounding factors such as the size of mother (maternal height, prepregnancy weight), parity, sex of child, gestational age, season of birth, and self-reported environmental tobacco smoke (ETS). The regression model explained 35% of the variability in birth weight (β = −200.8, p = 0.03), and both regression coefficients for PM2.5 and birth length (β = −1.44, p = 0.01) and head circumference (HC; β = −0.73, p = 0.02) were significant as well. In all regression models, the effect of ETS was insignificant. Predicted reduction in birth weight at an increase of exposure from 10 to 50 μg/m3 was 140.3 g. The corresponding predicted reduction of birth length would be 1.0 cm, and of HC, 0.5 cm. The study provides new and convincing epidemiologic evidence that high personal exposure to fine particles is associated with adverse effects on the developing fetus. These results indicate the need to reduce ambient fine particulate concentrations. However, further research should establish possible biologic mechanisms explaining the observed relationship.

Collaboration


Dive into the David Camann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wieslaw Jedrychowski

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dana B. Barr

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge