Frederica P. Perera
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frederica P. Perera.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Marija Kundakovic; Kathryn Gudsnuk; Becca Franks; Jesus Madrid; Rachel L. Miller; Frederica P. Perera; Frances A. Champagne
Bisphenol A (BPA) is an estrogenic endocrine disruptor widely used in the production of plastics. Increasing evidence indicates that in utero BPA exposure affects sexual differentiation and behavior; however, the mechanisms underlying these effects are unknown. We hypothesized that BPA may disrupt epigenetic programming of gene expression in the brain. Here, we provide evidence that maternal exposure during pregnancy to environmentally relevant doses of BPA (2, 20, and 200 µg/kg/d) in mice induces sex-specific, dose-dependent (linear and curvilinear), and brain region-specific changes in expression of genes encoding estrogen receptors (ERs; ERα and ERβ) and estrogen-related receptor-γ in juvenile offspring. Concomitantly, BPA altered mRNA levels of epigenetic regulators DNA methyltransferase (DNMT) 1 and DNMT3A in the juvenile cortex and hypothalamus, paralleling changes in estrogen-related receptors. Importantly, changes in ERα and DNMT expression in the cortex (males) and hypothalamus (females) were associated with DNA methylation changes in the ERα gene. BPA exposure induced persistent, largely sex-specific effects on social and anxiety-like behavior, leading to disruption of sexually dimorphic behaviors. Although postnatal maternal care was altered in mothers treated with BPA during pregnancy, the effects of in utero BPA were not found to be mediated by maternal care. However, our data suggest that increased maternal care may partially attenuate the effects of in utero BPA on DNA methylation. Overall, we demonstrate that low-dose prenatal BPA exposure induces lasting epigenetic disruption in the brain that possibly underlie enduring effects of BPA on brain function and behavior, especially regarding sexually dimorphic phenotypes.
Environmental Health Perspectives | 2010
Julie B. Herbstman; Andreas Sjödin; Matthew Kurzon; Sally Ann Lederman; Richard S. Jones; Virginia Rauh; Larry L. Needham; Deliang Tang; Megan M. Niedzwiecki; Richard Y. Wang; Frederica P. Perera
Background Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds that are persistent and bioaccumulative and therefore have become ubiquitous environment contaminants. Animal studies suggest that prenatal PBDE exposure may result in adverse neurodevelopmental effects. Objective In a longitudinal cohort initiated after 11 September 2001, including 329 mothers who delivered in one of three hospitals in lower Manhattan, New York, we examined prenatal PBDE exposure and neurodevelopment when their children were 12–48 and 72 months of age. Methods We analyzed 210 cord blood specimens for selected PBDE congeners and assessed neurodevelopmental effects in the children at 12–48 and 72 months of age; 118, 117, 114, 104, and 96 children with available cord PBDE measurements were assessed at 12, 24, 36, 48, and 72 months, respectively. We used multivariate regression analyses to evaluate the associations between concentrations of individual PBDE congeners and neurodevelopmental indices. Results Median cord blood concentrations of PBDE congeners 47, 99, and 100 were 11.2, 3.2, and 1.4 ng/g lipid, respectively. After adjustment for potential confounders, children with higher concentrations of BDEs 47, 99, or 100 scored lower on tests of mental and physical development at 12–48 and 72 months. Associations were significant for 12-month Psychomotor Development Index (BDE-47), 24-month Mental Development Index (MDI) (BDE-47, 99, and 100), 36-month MDI (BDE-100), 48-month full-scale and verbal IQ (BDE-47, 99, and 100) and performance IQ (BDE-100), and 72-month performance IQ (BDE-100). Conclusions This epidemiologic study demonstrates neurodevelopmental effects in relation to cord blood PBDE concentrations. Confirmation is needed in other longitudinal studies.
Pediatrics | 2006
Virginia Rauh; Robin Garfinkel; Frederica P. Perera; Howard Andrews; Lori Hoepner; Dana B. Barr; Ralph D. Whitehead; Deliang Tang; Robin W. Whyatt
OBJECTIVE. The purpose of this study was to investigate the impact of prenatal exposure to chlorpyrifos on 3-year neurodevelopment and behavior in a sample of inner-city minority children. METHODS. As part of an ongoing prospective cohort study in an inner-city minority population, neurotoxicant effects of prenatal exposure to chlorpyrifos were evaluated in 254 children through the first 3 years of life. This report examined cognitive and motor development at 12, 24, and 36 months (measured with the Bayley Scales of Infant Development II) and child behavior at 36 months (measured with the Child Behavior Checklist) as a function of chlorpyrifos levels in umbilical cord plasma. RESULTS. Highly exposed children (chlorpyrifos levels of >6.17 pg/g plasma) scored, on average, 6.5 points lower on the Bayley Psychomotor Development Index and 3.3 points lower on the Bayley Mental Development Index at 3 years of age compared with those with lower levels of exposure. Children exposed to higher, compared with lower, chlorpyrifos levels were also significantly more likely to experience Psychomotor Development Index and Mental Development Index delays, attention problems, attention-deficit/hyperactivity disorder problems, and pervasive developmental disorder problems at 3 years of age. CONCLUSIONS. The adjusted mean 36-month Psychomotor Development Index and Mental Development Index scores of the highly and lower exposed groups differed by only 7.1 and 3.0 points, respectively, but the proportion of delayed children in the high-exposure group, compared with the low-exposure group, was 5 times greater for the Psychomotor Development Index and 2.4 times greater for the Mental Development Index, increasing the number of children possibly needing early intervention services.
Environmental Health Perspectives | 2004
Robin M. Whyatt; Virginia Rauh; Dana B. Barr; David Camann; Howard Andrews; Robin Garfinkel; Lori Hoepner; Diurka Diaz; Jessica Dietrich; Andria Reyes; Deliang Tang; Patrick L. Kinney; Frederica P. Perera
We reported previously that insecticide exposures were widespread among minority women in New York City during pregnancy and that levels of the organophosphate chlorpyrifos in umbilical cord plasma were inversely associated with birth weight and length. Here we expand analyses to include additional insecticides (the organophosphate diazinon and the carbamate propoxur), a larger sample size (n = 314 mother–newborn pairs), and insecticide measurements in maternal personal air during pregnancy as well as in umbilical cord plasma at delivery. Controlling for potential confounders, we found no association between maternal personal air insecticide levels and birth weight, length, or head circumference. For each log unit increase in cord plasma chlorpyrifos levels, birth weight decreased by 42.6 g [95% confidence interval (CI), −81.8 to −3.8, p = 0.03] and birth length decreased by 0.24 cm (95% CI, −0.47 to −0.01, p = 0.04). Combined measures of (ln)cord plasma chlorpyrifos and diazinon (adjusted for relative potency) were also inversely associated with birth weight and length (p < 0.05). Birth weight averaged 186.3 g less (95% CI, −375.2 to −45.5) among newborns with the highest compared with lowest 26% of exposure levels (p = 0.01). Further, the associations between birth weight and length and cord plasma chlorpyrifos and diazinon were highly significant (p ≤ 0.007) among newborns born before the 2000–2001 U.S. Environmental Protection Agency’s regulatory actions to phase out residential use of these insecticides. Among newborns born after January 2001, exposure levels were substantially lower, and no association with fetal growth was apparent (p > 0.8). The propoxur metabolite 2-isopropoxyphenol in cord plasma was inversely associated with birth length, a finding of borderline significance (p = 0.05) after controlling for chlorpyrifos and diazinon. Results indicate that prenatal chlorpyrifos exposures have impaired fetal growth among this minority cohort and that diazinon exposures may have contributed to the effects. Findings support recent regulatory action to phase out residential uses of the insecticides.
PLOS ONE | 2009
Frederica P. Perera; Wan Yee Tang; Julie B. Herbstman; Deliang Tang; Linda Levin; Rachel L. Miller; Shuk-Mei Ho
In a longitudinal cohort of ∼700 children in New York City, the prevalence of asthma (>25%) is among the highest in the US. This high risk may in part be caused by transplacental exposure to traffic-related polycyclic aromatic hydrocarbons (PAHs) but biomarkers informative of PAH-asthma relationships is lacking. We here hypothesized that epigenetic marks associated with transplacental PAH exposure and/or childhood asthma risk could be identified in fetal tissues. Mothers completed personal prenatal air monitoring for PAH exposure determination. Methylation sensitive restriction fingerprinting was used to analyze umbilical cord white blood cell (UCWBC) DNA of 20 cohort children. Over 30 DNA sequences were identified whose methylation status was dependent on the level of maternal PAH exposure. Six sequences were found to be homologous to known genes having one or more 5′-CpG island(s) (5′-CGI). Of these, acyl-CoA synthetase long-chain family member 3 (ACSL3) exhibited the highest concordance between the extent of methylation of its 5′-CGI in UCWBCs and the level of gene expression in matched fetal placental tissues in the initial 20 cohort children. ACSL3 was therefore chosen for further investigation in a larger sample of 56 cohort children. Methylation of the ACSL3 5′-CGI was found to be significantly associated with maternal airborne PAH exposure exceeding 2.41 ng/m3 (OR = 13.8; p<0.001; sensitivity = 75%; specificity = 82%) and with a parental report of asthma symptoms in children prior to age 5 (OR = 3.9; p<0.05). Thus, if validated, methylated ACSL3 5′CGI in UCWBC DNA may be a surrogate endpoint for transplacental PAH exposure and/or a potential biomarker for environmentally-related asthma. This exploratory report provides a new blueprint for the discovery of epigenetic biomarkers relevant to other exposure assessments and/or investigations of exposure-disease relationships in birth cohorts. The results support the emerging theory of early origins of later life disease development.
Environmental Health Perspectives | 2006
Frederica P. Perera; Virginia Rauh; Robin M. Whyatt; Wei Yann Tsai; Deliang Tang; Diurka Diaz; Lori Hoepner; Dana B. Barr; Yi Hsuan Tu; David Camann; Patrick L. Kinney
Our prospective cohort study of nonsmoking African-American and Dominican mothers and children in New York City is evaluating the role of prenatal exposure to urban pollutants, including polycyclic aromatic hydrocarbons (PAHs), environmental tobacco smoke (ETS), and pesticides, in the pathogenesis of neurobehavioral disorders. We used the Bayley Scales of Infant Development to evaluate the effects on child mental and psychomotor development of prenatal exposure to airborne PAHs monitored during pregnancy by personal air sampling. Behavioral development was assessed by the Child Behavior Checklist. We adjusted for potential confounders including sociodemographic factors and prenatal exposure to ETS and chlorpyrifos. Prenatal exposure to PAHs was not associated with psychomotor development index or behavioral problems. However, high prenatal exposure to PAHs (upper quartile) was associated with lower mental development index at age 3 [β= –5.69; 95% confidence interval (CI), –9.05 to –2.33; p < 0.01]. The odds of cognitive developmental delay were also significantly greater for children with high prenatal exposure (odds ratio = 2.89; 95% CI, 1.33 to 6.25; p = 0.01). General estimated equation analysis showed a significant age × PAH effect on mental development (p = 0.01), confirming the age-specific regression findings. Further adjustment for lead did not alter the relationships. There were no differences in effect sizes by ethnicity. The results require confirmation but suggest that environmental PAHs at levels recently encountered in New York City air may adversely affect children’s cognitive development at 3 years of age, with implications for school performance.
Pediatrics | 2009
Frederica P. Perera; Zhigang Li; Robin M. Whyatt; Lori Hoepner; Shuang Wang; David Camann; Virginia Rauh
OBJECTIVE: This study evaluated the relationship between prenatal exposure to airborne polycyclic aromatic hydrocarbons (PAHs) and child intelligence. METHODS: Children of nonsmoking black or Dominican-American women residing in New York City were monitored from in utero to 5 years of age, with determination of prenatal PAH exposure through personal air monitoring for the mothers during pregnancy. At 5 years of age, intelligence was assessed for 249 children by using the Wechsler Preschool and Primary Scale of Intelligence-Revised. Multivariate linear regression models were used to estimate and to test the associations between prenatal PAH exposure and IQ. RESULTS: After adjustment for maternal intelligence, quality of the home caretaking environment, environmental tobacco smoke exposure, and other potentially confounding factors, high PAH levels (above the median of 2.26 ng/m3) were inversely associated with full-scale IQ (P = .007) and verbal IQ (P = .003) scores. Children in the high-exposure group had full-scale and verbal IQ scores that were 4.31 and 4.67 points lower, respectively, than those of less-exposed children (≤2.26 ng/m3). The associations between logarithmically transformed, continuous, PAH levels and these IQ measures also were significant (full-scale IQ: β = −3.00; P = .009; verbal IQ: β = −3.53; P = .002). CONCLUSION: These results provide evidence that environmental PAHs at levels encountered in New York City air can affect childrens IQ adversely.
Environmental Health Perspectives | 2011
Virginia Rauh; Srikesh G. Arunajadai; Megan K. Horton; Frederica P. Perera; Lori Hoepner; Dana Boyd Barr; Robin M. Whyatt
Background: In a longitudinal birth cohort study of inner-city mothers and children (Columbia Center for Children’s Environmental Health), we have previously reported that prenatal exposure to chlorpyrifos (CPF) was associated with neurodevelopmental problems at 3 years of age. Objective: The goal of the study was to estimate the relationship between prenatal CPF exposure and neurodevelopment among cohort children at 7 years of age. Methods: In a sample of 265 children, participants in a prospective study of air pollution, we measured prenatal CPF exposure using umbilical cord blood plasma (picograms/gram plasma) and 7-year neurodevelopment using the Wechsler Intelligence Scale for Children, 4th edition (WISC-IV). Linear regression models were used to estimate associations, with covariate selection based on two alternate approaches. Results: On average, for each standard deviation increase in CPF exposure (4.61 pg/g), Full-Scale intelligence quotient (IQ) declined by 1.4% and Working Memory declined by 2.8%. Final covariates included maternal educational level, maternal IQ, and quality of the home environment. We found no significant interactions between CPF and any covariates, including the other chemical exposures measured during the prenatal period (environmental tobacco smoke and polycyclic aromatic hydrocarbons). Conclusions: We report evidence of deficits in Working Memory Index and Full-Scale IQ as a function of prenatal CPF exposure at 7 years of age. These findings are important in light of continued widespread use of CPF in agricultural settings and possible longer-term educational implications of early cognitive deficits.
Environmental Health Perspectives | 2008
Jennifer J. Adibi; Robin M. Whyatt; Paige L. Williams; Antonia M. Calafat; David Camann; Robert F. Herrick; Heather H. Nelson; Hari K. Bhat; Frederica P. Perera; Manori J. Silva; Russ Hauser
Background Although urinary concentrations of phthalate metabolites are frequently used as biomarkers in epidemiologic studies, variability during pregnancy has not been characterized. Methods We measured phthalate metabolite concentrations in spot urine samples collected from 246 pregnant Dominican and African-American women. Twenty-eight women had repeat urine samples collected over a 6-week period. We also analyzed 48-hr personal air samples (n = 96 women) and repeated indoor air samples (n = 32 homes) for five phthalate diesters. Mixed-effects models were fit to evaluate reproducibility via intraclass correlation coefficients (ICC). We evaluated the sensitivity and specificity of using a single specimen versus repeat samples to classify a woman’s exposure in the low or high category. Results Phthalates were detected in 85–100% of air and urine samples. ICCs for the unadjusted urinary metabolite concentrations ranged from 0.30 for mono-ethyl phthalate to 0.66 for monobenzyl phthalate. For indoor air, ICCs ranged from 0.48 [di-2-ethylhexyl phthalate (DEHP)] to 0.83 [butylbenzyl phthalate (BBzP)]. Air levels of phthalate diesters correlated with their respective urinary metabolite concentrations for BBzP (r = 0.71), di-isobutyl phthalate (r = 0.44), and diethyl phthalate (DEP; r = 0.39). In women sampled late in pregnancy, specific gravity appeared to be more effective than creatinine in adjusting for urine dilution. Conclusions Urinary concentrations of DEP and DEHP metabolites in pregnant women showed lower reproducibility than metabolites for di-n-butyl phthalate and BBzP. A single indoor air sample may be sufficient to characterize phthalate exposure in the home, whereas urinary phthalate biomarkers should be sampled longitudinally during pregnancy to minimize exposure misclassification.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Virginia A. Rauh; Frederica P. Perera; Megan K. Horton; Robin M. Whyatt; Ravi Bansal; Xuejun Hao; Jun Liu; Dana Boyd Barr; Theodore A. Slotkin; Bradley S. Peterson
Prenatal exposure to chlorpyrifos (CPF), an organophosphate insecticide, is associated with neurobehavioral deficits in humans and animal models. We investigated associations between CPF exposure and brain morphology using magnetic resonance imaging in 40 children, 5.9–11.2 y, selected from a nonclinical, representative community-based cohort. Twenty high-exposure children (upper tertile of CPF concentrations in umbilical cord blood) were compared with 20 low-exposure children on cortical surface features; all participants had minimal prenatal exposure to environmental tobacco smoke and polycyclic aromatic hydrocarbons. High CPF exposure was associated with enlargement of superior temporal, posterior middle temporal, and inferior postcentral gyri bilaterally, and enlarged superior frontal gyrus, gyrus rectus, cuneus, and precuneus along the mesial wall of the right hemisphere. Group differences were derived from exposure effects on underlying white matter. A significant exposure × IQ interaction was derived from CPF disruption of normal IQ associations with surface measures in low-exposure children. In preliminary analyses, high-exposure children did not show expected sex differences in the right inferior parietal lobule and superior marginal gyrus, and displayed reversal of sex differences in the right mesial superior frontal gyrus, consistent with disruption by CPF of normal behavioral sexual dimorphisms reported in animal models. High-exposure children also showed frontal and parietal cortical thinning, and an inverse dose–response relationship between CPF and cortical thickness. This study reports significant associations of prenatal exposure to a widely used environmental neurotoxicant, at standard use levels, with structural changes in the developing human brain.