Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Cortez is active.

Publication


Featured researches published by David Cortez.


Nature Reviews Molecular Cell Biology | 2008

ATR: an essential regulator of genome integrity

Karlene A. Cimprich; David Cortez

Genome maintenance is a constant concern for cells, and a coordinated response to DNA damage is required to maintain cellular viability and prevent disease. The ataxia-telangiectasia mutated (ATM) and ATM and RAD3-related (ATR) protein kinases act as master regulators of the DNA-damage response by signalling to control cell-cycle transitions, DNA replication, DNA repair and apoptosis. Recent studies have provided new insights into the mechanisms that control ATR activation, have helped to explain the overlapping but non-redundant activities of ATR and ATM in DNA-damage signalling, and have clarified the crucial functions of ATR in maintaining genome integrity.


Journal of Biological Chemistry | 2006

Rapid Activation of ATR by Ionizing Radiation Requires ATM and Mre11

Jeremy S. Myers; David Cortez

The ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases are crucial regulatory proteins in genotoxic stress response pathways that pause the cell cycle to permit DNA repair. Here we show that Chk1 phosphorylation in response to hydroxyurea and ultraviolet radiation is ATR-dependent and ATM- and Mre11-independent. In contrast, Chk1 phosphorylation in response to ionizing radiation (IR) is dependent on ATR, ATM, and Mre11. The ATR and ATM/Mre11 pathways are generally thought to be separate with ATM activation occurring early and ATR activation occurring as a late response to double strand breaks. However, we demonstrate that ATR is activated rapidly by IR, and ATM and Mre11 enhance ATR signaling. ATR-ATR-interacting protein recruitment to double strand breaks is less efficient in the absence of ATM and Mre11. Furthermore, IR-induced replication protein A foci formation is defective in ATM- and Mre11-deficient cells. Thus, ATM and Mre11 may stimulate the ATR signaling pathway by converting DNA damage generated by IR into structures that recruit and activate ATR.


Molecular and Cellular Biology | 1995

Structural and Signaling Requirements for BCR-ABL-Mediated Transformation and Inhibition of Apoptosis

David Cortez; Lisa Kadlec; Andann Marie Pendergast

BCR-ABL is a deregulated tyrosine kinase expressed in Philadelphia chromosome-positive human leukemias. Prolongation of hematopoietic cell survival by inhibition of apoptosis has been proposed to be an integral component of BCR-ABL-induced chronic myelogenous leukemia. BCR-ABL elicits transformation of both fibroblast and hematopoietic cells and blocks apoptosis following cytokine deprivation in various factor-dependent cells. To elucidate the mechanisms whereby BCR-ABL induces transformation and blocks apoptosis in hematopoietic cells, we examined the biological effects of expression of a series of BCR-ABL mutants. Single amino acid substitutions in the GRB2 binding site (Y177F), Src homology 2 domain (R552L), or an autophosphorylation site in the tyrosine kinase domain (Y793F) do not diminish the antiapoptotic and transforming properties of BCR-ABL in hematopoietic cells, although these mutations were previously shown to drastically reduce the transforming activity of BCR-ABL in fibroblasts. A BCR-ABL molecule containing all three mutations (Y177F/R552L/Y793F) exhibits a severe decrease in transforming and antiapoptotic activities compared with the wild-type BCR-ABL protein in 32D myeloid progenitor cells. Ras is activated, the SHC adapter protein is tyrosine phosphorylated and binds GRB2, and myc mRNA levels are increased following expression of all kinase active BCR-ABL proteins with the exception of the Y177F/R552L/Y793F BCR-ABL mutant in 32D cells. We propose that BCR-ABL uses multiple pathways to activate Ras in hematopoietic cells and that this activation is necessary for the transforming and antiapoptotic activities of BCR-ABL. However, Ras activation is not sufficient for BCR-ABL-mediated transformation. A BCR-ABL deletion mutant (delta 176-427) that activates Ras and blocks apoptosis but has severely impaired transforming ability in 32D cells has been identified. These data suggest that BCR-ABL requires additional signaling components to elicit tumorigenic growth which are distinct from those required to block apoptosis.


Molecular Cell | 2008

Deletion of Histone Deacetylase 3 reveals critical roles in S-phase progression and DNA damage control

Srividya Bhaskara; Brenda J. Chyla; Joseph M. Amann; Sarah K. Knutson; David Cortez; Zu Wen Sun; Scott W. Hiebert

Histone deacetylases (HDACs) are enzymes that modify key residues in histones to regulate chromatin architecture, and they play a vital role in cell survival, cell-cycle progression, and tumorigenesis. To understand the function of Hdac3, a critical component of the N-CoR/SMRT repression complex, a conditional allele of Hdac3 was engineered. Cre-recombinase-mediated inactivation of Hdac3 led to a delay in cell-cycle progression, cell-cycle-dependent DNA damage, and apoptosis in mouse embryonic fibroblasts (MEFs). While no overt defects in mitosis were observed in Hdac3-/- MEFs, including normal H3Ser10 phosphorylation, DNA damage was observed in Hdac3-/- interphase cells, which appears to be associated with defective DNA double-strand break repair. Moreover, we noted that Hdac3-/- MEFs were protected from DNA damage when quiescent, which may provide a mechanistic basis for the action of HDAC inhibitors on cycling tumor cells.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Direct DNA binding by Brca1

Tanya T. Paull; David Cortez; Blair Bowers; Stephen J. Elledge; Martin Gellert

The tumor suppressor Brca1 plays an important role in protecting mammalian cells against genomic instability, but little is known about its modes of action. In this work we demonstrate that recombinant human Brca1 protein binds strongly to DNA, an activity conferred by a domain in the center of the Brca1 polypeptide. As a result of this binding, Brca1 inhibits the nucleolytic activities of the Mre11/Rad50/Nbs1 complex, an enzyme implicated in numerous aspects of double-strand break repair. Brca1 displays a preference for branched DNA structures and forms protein–DNA complexes cooperatively between multiple DNA strands, but without DNA sequence specificity. This fundamental property of Brca1 may be an important part of its role in DNA repair and transcription.


Genes & Development | 2008

TopBP1 activates ATR through ATRIP and a PIKK regulatory domain

Daniel A. Mordes; Gloria G. Glick; Runxiang Zhao; David Cortez

The ATR (ATM and Rad3-related) kinase and its regulatory partner ATRIP (ATR-interacting protein) coordinate checkpoint responses to DNA damage and replication stress. TopBP1 functions as a general activator of ATR. However, the mechanism by which TopBP1 activates ATR is unknown. Here, we show that ATRIP contains a TopBP1-interacting region that is necessary for the association of TopBP1 and ATR, for TopBP1-mediated activation of ATR, and for cells to survive and recover DNA synthesis following replication stress. We demonstrate that this region is functionally conserved in the Saccharomyces cerevisiae ATRIP ortholog Ddc2, suggesting a conserved mechanism of regulation. In addition, we identify a domain of ATR that is critical for its activation by TopBP1. Mutations of the ATR PRD (PIKK [phosphoinositide 3-kinase related kinase] Regulatory Domain) do not affect the basal kinase activity of ATR but prevent its activation. Cellular complementation experiments demonstrate that TopBP1-mediated ATR activation is required for checkpoint signaling and cellular viability. The PRDs of ATM and mTOR (mammalian target of rapamycin) were shown previously to regulate the activities of these kinases, and our data indicate that the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) PRD is important for DNA-PKcs regulation. Therefore, divergent amino acid sequences within the PRD and a unique protein partner allow each of these PIK kinases to respond to distinct cellular events.


Biochemical Journal | 2011

ATR signalling: more than meeting at the fork.

Edward A. Nam; David Cortez

Preservation of genome integrity via the DNA-damage response is critical to prevent disease. ATR (ataxia telangiectasia mutated- and Rad3-related) is essential for life and functions as a master regulator of the DNA-damage response, especially during DNA replication. ATR controls and co-ordinates DNA replication origin firing, replication fork stability, cell cycle checkpoints and DNA repair. Since its identification 15 years ago, a model of ATR activation and signalling has emerged that involves localization to sites of DNA damage and activation through protein-protein interactions. Recent research has added an increasingly detailed understanding of the canonical ATR pathway, and an appreciation that the canonical model does not fully capture the complexity of ATR regulation. In the present article, we review the ATR signalling process, focusing on mechanistic findings garnered from the identification of new ATR-interacting proteins and substrates. We discuss how to incorporate these new insights into a model of ATR regulation and point out the significant gaps in our understanding of this essential genome-maintenance pathway.


Genes & Development | 2011

Analysis of protein dynamics at active, stalled, and collapsed replication forks

Bianca M. Sirbu; Frank B. Couch; Jordan T. Feigerle; Srividya Bhaskara; Scott W. Hiebert; David Cortez

Successful DNA replication and packaging of newly synthesized DNA into chromatin are essential to maintain genome integrity. Defects in the DNA template challenge genetic and epigenetic inheritance. Unfortunately, tracking DNA damage responses (DDRs), histone deposition, and chromatin maturation at replication forks is difficult in mammalian cells. Here we describe a technology called iPOND (isolation of proteins on nascent DNA) to analyze proteins at active and damaged replication forks at high resolution. Using this methodology, we define the timing of histone deposition and chromatin maturation. Class 1 histone deacetylases are enriched at replisomes and remove predeposition marks on histone H4. Chromatin maturation continues even when decoupled from replisome movement. Furthermore, fork stalling causes changes in the recruitment and phosphorylation of proteins at the damaged fork. Checkpoint kinases catalyze H2AX phosphorylation, which spreads from the stalled fork to include a large chromatin domain even prior to fork collapse and double-strand break formation. Finally, we demonstrate a switch in the DDR at persistently stalled forks that includes MRE11-dependent RAD51 assembly. These data reveal a dynamic recruitment of proteins and post-translational modifications at damaged forks and surrounding chromatin. Furthermore, our studies establish iPOND as a useful methodology to study DNA replication and chromatin maturation.


Oncogene | 1997

The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells

David Cortez; Gary W. Reuther; Ann Marie Pendergast

Bcr-Abl is a constitutively active tyrosine kinase that is expressed in Philadelphia chromosome (Ph1)-positive human leukemias. Bcr-Abl has been shown to inhibit apoptosis and cause anchorage independent growth. However, its ability to activate mitogenic signaling pathways is controversial. Here we show that Bcr-Abl signaling prevents down-regulation of cyclin-dependent kinase activity and cell cycle arrest after growth factor deprivation of hematopoietic progenitor cells. Using an inducible system to regulate Bcr-Abl expression, we also demonstrate that Bcr-Abl expression is sufficient to induce G1-to-S phase transition, DNA synthesis, and activation of cyclin-dependent kinases in cells that were arrested in G0 by growth factor deprivation. Furthermore, Bcr-Abl activates Ras, Erk, and Jnk pathways as a primary consequence of expression. These data show that Bcr-Abl is one of a select group of oncogenes that is capable of both inhibiting apoptosis and deregulating cell proliferation. The combination of these activities is likely to be important for the progression of CML.


DNA Repair | 2009

Common mechanisms of PIKK regulation.

Courtney A. Lovejoy; David Cortez

Kinases in the phosphoinositide three-kinase-related kinase (PIKK) family include ATM (ataxia-telangiectasia mutated), ATR (ATM- and Rad3-related), DNA-PKcs (DNA-dependent protein kinase catalytic subunit), mTOR (mammalian target of rapamycin), and SMG1 (suppressor with morphological effect on genitalia family member). These atypical protein kinases regulate DNA damage responses, nutrient-dependent signaling, and nonsense-mediated mRNA decay. This review focuses on the mechanisms regulating the PIKK family with a strong emphasis on the DNA damage regulated kinases. We outline common regulatory themes and suggest how discoveries about the regulation of one PIKK can be informative for the other family members.

Collaboration


Dive into the David Cortez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen J. Elledge

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge