Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Runxiang Zhao is active.

Publication


Featured researches published by Runxiang Zhao.


Journal of Biological Chemistry | 2005

Identification of an Acquired JAK2 Mutation in Polycythemia Vera

Runxiang Zhao; Shu Xing; Zhe Li; Xueqi Fu; Qingshan Li; Sanford B. Krantz; Zhizhuang Joe Zhao

Polycythemia vera (PV) is a human clonal hematological disorder. The molecular etiology of the disease has not been identified. PV hematopoietic progenitor cells exhibit hypersensitivity to growth factors and cytokines, suggesting possible abnormalities in protein-tyrosine kinases and phosphatases. By sequencing the entire coding regions of cDNAs of candidate enzymes, we identified a G:C→ T:A point mutation of the JAK2 tyrosine kinase in 20 of 24 PV blood samples but none in 12 normal samples. The mutation has varying degrees of heterozygosity and is apparently acquired. It changes conserved Val617 to Phe in the pseudokinase domain of JAK2 that is known to have an inhibitory role. The mutant JAK2 has enhanced kinase activity, and when overexpressed together with the erythropoietin receptor in cells, it caused hyperactivation of erythropoietin-induced cell signaling. This gain-of-function mutation of JAK may explain the hypersensitivity of PV progenitor cells to growth factors and cytokines. Our study thus defines a molecular defect of PV.


Genes & Development | 2008

TopBP1 activates ATR through ATRIP and a PIKK regulatory domain

Daniel A. Mordes; Gloria G. Glick; Runxiang Zhao; David Cortez

The ATR (ATM and Rad3-related) kinase and its regulatory partner ATRIP (ATR-interacting protein) coordinate checkpoint responses to DNA damage and replication stress. TopBP1 functions as a general activator of ATR. However, the mechanism by which TopBP1 activates ATR is unknown. Here, we show that ATRIP contains a TopBP1-interacting region that is necessary for the association of TopBP1 and ATR, for TopBP1-mediated activation of ATR, and for cells to survive and recover DNA synthesis following replication stress. We demonstrate that this region is functionally conserved in the Saccharomyces cerevisiae ATRIP ortholog Ddc2, suggesting a conserved mechanism of regulation. In addition, we identify a domain of ATR that is critical for its activation by TopBP1. Mutations of the ATR PRD (PIKK [phosphoinositide 3-kinase related kinase] Regulatory Domain) do not affect the basal kinase activity of ATR but prevent its activation. Cellular complementation experiments demonstrate that TopBP1-mediated ATR activation is required for checkpoint signaling and cellular viability. The PRDs of ATM and mTOR (mammalian target of rapamycin) were shown previously to regulate the activities of these kinases, and our data indicate that the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) PRD is important for DNA-PKcs regulation. Therefore, divergent amino acid sequences within the PRD and a unique protein partner allow each of these PIK kinases to respond to distinct cellular events.


Journal of Biological Chemistry | 2011

Thr-1989 Phosphorylation Is a Marker of Active Ataxia Telangiectasia-mutated and Rad3-related (ATR) Kinase

Edward A. Nam; Runxiang Zhao; Gloria G. Glick; Carol E. Bansbach; David B. Friedman; David Cortez

The DNA damage response kinases ataxia telangiectasia-mutated (ATM), DNA-dependent protein kinase (DNA-PK), and ataxia telangiectasia-mutated and Rad3-related (ATR) signal through multiple pathways to promote genome maintenance. These related kinases share similar methods of regulation, including recruitment to specific nucleic acid structures and association with protein activators. ATM and DNA-PK also are regulated via phosphorylation, which provides a convenient biomarker for their activity. Whether phosphorylation regulates ATR is unknown. Here we identify ATR Thr-1989 as a DNA damage-regulated phosphorylation site. Selective inhibition of ATR prevents Thr-1989 phosphorylation, and phosphorylation requires ATR activation. Cells engineered to express only a non-phosphorylatable T1989A mutant exhibit a modest ATR functional defect. Our results suggest that, like ATM and DNA-PK, phosphorylation regulates ATR, and phospho-peptide specific antibodies to Thr-1989 provide a proximal marker of ATR activation.


EMBO Reports | 2010

Cyclin‐dependent kinase 9–cyclin K functions in the replication stress response

David S. Yu; Runxiang Zhao; Emory L Hsu; Jennifer Cayer; Fei Ye; Yan Guo; Yu Shyr; David Cortez

Cyclin‐dependent kinase 9 (CDK9) is a well‐characterized subunit of the positive transcription elongation factor b complex in which it regulates transcription elongation in cooperation with cyclin T. However, CDK9 also forms a complex with cyclin K, the function of which is less clear. Using a synthetic lethal RNA interference screen in human cells, we identified CDK9 as a component of the replication stress response. Loss of CDK9 activity causes an increase in spontaneous levels of DNA damage signalling in replicating cells and a decreased ability to recover from a transient replication arrest. This activity is restricted to CDK9–cyclin K complexes and is independent of CDK9–cyclin T complex. CDK9 accumulates on chromatin in response to replication stress and limits the amount of single‐stranded DNA in cells under stress. Furthermore, we show that CDK9 and cyclin K interact with ataxia telangiectasia and Rad3‐related protein and other checkpoint signalling proteins. These results reveal an unexpectedly direct role for CDK9–cyclin K in checkpoint pathways that maintain genome integrity in response to replication stress.


Journal of Biological Chemistry | 1998

Purification and Cloning of PZR, a Binding Protein and Putative Physiological Substrate of Tyrosine Phosphatase SHP-2

Zhizhuang Joe Zhao; Runxiang Zhao

Overexpression of a catalytically inactive mutant of tyrosine phosphatase SHP-2 in 293 cells resulted in hyperphosphorylation of a glycoprotein specifically associated with the enzyme. The protein has been purified to near homogeneity. Based on the amino acid sequences of peptides obtained from the protein, a full-length cDNA was isolated. The cDNA encodes a protein with a single transmembrane segment and a signal sequence. The extracellular portion of the protein contains a single immunoglobulin-like domain displaying 46% sequence identity to that of myelin P0, a major structural protein of peripheral myelin. The intracellular segment of the protein shows no significant sequence identity to any known protein except for two immunoreceptor tyrosine-based inhibitory motifs. We name the protein PZR for protein zero related. Transfection of the PZR cDNA in Jurkat cells gave rise to a protein of expected molecular size. Stimulation of cells with pervanadate resulted in tyrosine phosphorylation of PZR and a near-stoichiometric association of PZR with SHP-2. Northern blotting analyses revealed that PZR is widely expressed in human tissues and is particularly abundant in heart, placenta, kidney, and pancreas. As a binding protein and a putative substrate of SHP-2, PZR protein may have an important role in cell signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Functional genomic screens identify CINP as a genome maintenance protein

Courtney A. Lovejoy; Xin Xu; Carol E. Bansbach; Gloria G. Glick; Runxiang Zhao; Fei Ye; Bianca M. Sirbu; Laura C. Titus; Yu Shyr; David Cortez

The DNA damage response (DDR) has a critical role in maintaining genome integrity and serves as a barrier to tumorigenesis by promoting cell-cycle arrest, DNA repair, and apoptosis. The DDR is activated not only by genotoxic agents that induce DNA damage, but also during aberrant cell-division cycles caused by activated oncogenes and inactivated tumor suppressors. Here we use RNAi and cDNA overexpression screens in human cells to identify genes that, when deregulated, lead to activation of the DDR. The RNAi screen identified 73 genes that, when silenced in at least two cell types, cause DDR activation. Silencing several of these genes also caused an increased frequency of micronuclei, a marker of genetically unstable cells. The cDNA screen identified 97 genes that when overexpressed induce DDR activation in the absence of any exogenous genotoxic agent, with an overrepresentation of genes linked to cancer. Secondary RNAi screens identified CDK2-interacting protein (CINP) as a cell-cycle checkpoint protein. CINP interacts with ATR-interacting protein and regulates ATR-dependent signaling, resistance to replication stress, and G2 checkpoint integrity.


Cancer Research | 2007

Cyclin-Dependent Kinase 2–Dependent Phosphorylation of ATRIP Regulates the G2-M Checkpoint Response to DNA Damage

Jeremy S. Myers; Runxiang Zhao; Xin Xu; Amy-Joan L. Ham; David Cortez

The ATR-ATRIP kinase complex regulates cellular responses to DNA damage and replication stress. Mass spectrometry was used to identify phosphorylation sites on ATR and ATRIP to understand how the kinase complex is regulated by post-translational modifications. Two novel phosphorylation sites on ATRIP were identified, S224 and S239. Phosphopeptide-specific antibodies to S224 indicate that it is phosphorylated in a cell cycle-dependent manner. S224 matches a consensus site for cyclin-dependent kinase (CDK) phosphorylation and is phosphorylated by CDK2-cyclin A in vitro. S224 phosphorylation in cells is sensitive to CDK2 inhibitors. Mutation of S224 to alanine causes a defect in the ATR-ATRIP-dependent maintenance of the G(2)-M checkpoint to ionizing and UV radiation. Thus, ATRIP is a CDK2 substrate, and CDK2-dependent phosphorylation of S224 regulates the ability of ATR-ATRIP to promote cell cycle arrest in response to DNA damage.


Journal of Biological Chemistry | 2000

Identification and Characterization of Leukocyte-associated Ig-like Receptor-1 as a Major Anchor Protein of Tyrosine Phosphatase SHP-1 in Hematopoietic Cells

Ming Jiang Xu; Runxiang Zhao; Zhizhuang Joe Zhao

SHP-1, an SH2 domain-containing tyrosine phosphatase, has a crucial role in hematopoiesis. Here we report that SHP-1 is associated with two major tyrosine-phosphorylated proteins in hematopoietic cells treated with the tyrosine phosphatase inhibitor, pervanadate. One of the proteins corresponds to leukocyte-associated Ig-like receptor-1 (LAIR-1), a recently cloned transmembrane protein. Molecular cloning revealed four isoforms of the protein. LAIR-1 is hyper-phosphorylated on tyrosyl residues in cells overexpressing a catalytically inactive mutant form of SHP-1 as well as in pervanadate-treated cells. An antibody against the extracellular domain of the protein also induced its tyrosine phosphorylation. Tyrosine-phosphorylated LAIR-1 specifically interacts with SHP-1 but not with SHP-2, a structurally related tyrosine phosphatase. Using site-specific mutagenesis, we demonstrated that Tyr233 and Tyr263, each embedded in an immunoreceptor tyrosine-based inhibitory motif, are responsible for tyrosine phosphorylation of LAIR-1 and recruitment of SHP-1. Both tyrosyl residues are required for SHP-1 binding. Protein kinases responsible for tyrosine phosphorylation of LAIR-1 may belong to the Src family since PP1, a Src family kinase inhibitor, significantly inhibited its phosphorylation. As a major binding protein of SHP-1 on the plasma membrane, LAIR-1 may play an important role in hematopoietic cell signaling.


Biochemical and Biophysical Research Communications | 2002

SPAP2, an Ig family receptor containing both ITIMs and ITAMs.

Ming Jiang Xu; Runxiang Zhao; Hongxi Cao; Zhizhuang Joe Zhao

This study reports cloning and characterization of SPAP2, a novel transmembrane protein. The extracellular portion of SPAP2 contains six immunoglobulin-like domains and its intracellular segment has two immunoreceptor tyrosine-based activation motifs (ITAMs) and two immunoreceptor tyrosine-based inhibition motifs (ITIMs). We also identified four alternatively spliced products. Sequence alignment with the genomic database revealed that the SPAP2 gene contains 16 exons and is localized at chromosome 1q21. PCR analyses demonstrated that SPAP2 mRNA is expressed in restricted human tissues including the kidney, salivary gland, adrenal gland, uterus, and bone marrow. Tyrosine-phosphorylated SPAP2 is specifically associated with SH2 domain-containing tyrosine kinases Syk and Zap70 and SH2 domain-containing tyrosine phosphatases SHP-1 and SHP-2. Site-specific mutagenesis studies revealed that tyrosyl residues 650 and 662 embedded in the ITIMs are responsible for the binding of Syk and Zap70 while tyrosyl residues 692 and 722 embedded in the ITIMs are involved in interactions with SHP-1 and SHP-2. Finally, recruitment of SHP-1 to the tyrosine-phosphorylated ITIMs led to a marked activation of the enzyme.


PLOS ONE | 2013

Identification and Characterization of SMARCAL1 Protein Complexes

Rémy Bétous; Gloria G. Glick; Runxiang Zhao; David Cortez

SMARCAL1 is an ATPase in the SNF2 family that functions at damaged replication forks to promote their stability and restart. It acts by translocating on DNA to catalyze DNA strand annealing, branch migration, and fork regression. Many SNF2 enzymes work as motor subunits of large protein complexes. To determine if SMARCAL1 is also a member of a protein complex and to further understand how it functions in the replication stress response, we used a proteomics approach to identify interacting proteins. In addition to the previously characterized interaction with replication protein A (RPA), we found that SMARCAL1 forms complexes with several additional proteins including DNA-PKcs and the WRN helicase. SMARCAL1 and WRN co-localize at stalled replication forks independently of one another. The SMARCAL1 interaction with WRN is indirect and is mediated by RPA acting as a scaffold. SMARCAL1 and WRN act independently to prevent MUS81 cleavage of the stalled fork. Biochemical experiments indicate that both catalyze fork regression with SMARCAL1 acting more efficiently and independently of WRN. These data suggest that RPA brings a complex of SMARCAL1 and WRN to stalled forks, but that they may act in different pathways to promote fork repair and restart.

Collaboration


Dive into the Runxiang Zhao's collaboration.

Top Co-Authors

Avatar

Zhizhuang Joe Zhao

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Qi

Vanderbilt University

View shared research outputs
Researchain Logo
Decentralizing Knowledge