Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Croteau is active.

Publication


Featured researches published by David Croteau.


Neuro-oncology | 2010

Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma †

Sandeep Kunwar; Susan M. Chang; Manfred Westphal; Michael A. Vogelbaum; John H. Sampson; Gene Barnett; Mark E. Shaffrey; Zvi Ram; Joseph M. Piepmeier; Michael D. Prados; David Croteau; Christoph Pedain; Pamela Leland; Syed R. Husain; Bharat H. Joshi; Raj K. Puri

Convection-enhanced delivery (CED) of cintredekin besudotox (CB) was compared with Gliadel wafers (GW) in adult patients with glioblastoma multiforme (GBM) at first recurrence. Patients were randomized 2:1 to receive CB or GW. CB (0.5 microg/mL; total flow rate 0.75 mL/h) was administered over 96 hours via 2-4 intraparenchymal catheters placed after tumor resection. GW (3.85%/7.7 mg carmustine per wafer; maximum 8 wafers) were placed immediately after tumor resection. The primary endpoint was overall survival from the time of randomization. Prestated interim analyses were built into the study design. Secondary and tertiary endpoints were safety and health-related quality-of-life assessments. From March 2004 to December 2005, 296 patients were enrolled at 52 centers. Demographic and baseline characteristics were balanced between the 2 treatment arms. Median survival was 36.4 weeks (9.1 months) for CB and 35.3 weeks (8.8 months) for GW (P = .476). For the efficacy evaluable population, the median survival was 45.3 weeks (11.3 months) for CB and 39.8 weeks (10 months) for GW (P = .310). The adverse-events profile was similar in both arms, except that pulmonary embolism was higher in the CB arm (8% vs 1%, P = .014). This is the first randomized phase III evaluation of an agent administered via CED and the first with an active comparator in GBM patients. There was no survival difference between CB administered via CED and GW. Drug distribution was not assessed and may be crucial for evaluating future CED-based therapeutics.


Journal of Clinical Oncology | 2007

Direct Intracerebral Delivery of Cintredekin Besudotox (IL13-PE38QQR) in Recurrent Malignant Glioma: A Report by the Cintredekin Besudotox Intraparenchymal Study Group

Sandeep Kunwar; Michael D. Prados; Susan M. Chang; Mitchel S. Berger; Frederick F. Lang; Joseph M. Piepmeier; John H. Sampson; Zvi Ram; Philip H. Gutin; Robert D. Gibbons; Kenneth D. Aldape; David Croteau; Jeffrey W. Sherman; Raj K. Puri

PURPOSE Glioblastoma multiforme (GBM) is a devastating brain tumor with a median survival of 6 months after recurrence. Cintredekin besudotox (CB) is a recombinant protein consisting of interleukin-13 (IL-13) and a truncated form of Pseudomonas exotoxin (PE38QQR). Convection-enhanced delivery (CED) is a locoregional-administration method leading to high-tissue concentrations with large volume of distributions. We assessed the use of intracerebral CED to deliver CB in patients with recurrent malignant glioma (MG). PATIENTS AND METHODS Three phase I clinical studies evaluated intracerebral CED of CB along with tumor resection. The main objectives were to assess the tolerability of various concentrations and infusion durations; tissue distribution; and methods for optimizing delivery. All patients underwent tumor resection followed by a single intraparenchymal infusion (in addition to the intraparenchymal one following resection), with a portion of patients who had a preresection intratumoral infusion. RESULTS A total of 51 patients with MG were treated including 46 patients with GBM. The maximum tolerated intraparenchymal concentration was 0.5 microg/mL and tumor necrosis was observed at this concentration. Infusion durations of up to 6 days were well tolerated. Postoperative catheter placement appears to be important for optimal drug distribution. CB- and procedure-related adverse events were primarily limited to the CNS. Overall median survival for GBM patients is 42.7 weeks and 55.6 weeks for patients with optimally positioned catheters with patient follow-up extending beyond 5 years. CONCLUSION CB appears to have a favorable risk-benefit profile. CED is a complex delivery method requiring catheter placement via a second procedure to achieve accurate catheter positioning, better drug distribution, and better outcome.


Neurosurgery | 2002

Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis.

Jack P. Rock; David Hearshen; Lisa Scarpace; David Croteau; Jorge Gutierrez; James L. Fisher; Mark L. Rosenblum; Tom Mikkelsen; Douglas Kondziolka; Philip H. Gutin; Eric Lis; Jay S. Loeffler; Joseph M. Piepmeier; Jeffrey S. Weinberg; Raymond Sawaya

OBJECTIVE The differentiation of tumor recurrence from radiation necrosis in patients with malignant gliomas who have been treated previously remains a challenge. Magnetic resonance imaging, single-photon emission computed tomography, and positron emission tomography cannot provide definitive histopathological insight. Multivoxel proton magnetic resonance spectroscopic imaging (1H MRSI) may be reliable in guiding the clinical management of untreated patients; however, its value in managing previously treated patients remains unclear. METHODS Twenty-seven patients who had been treated previously with surgery, radiotherapy, and chemotherapy and reoperated for clinical and/or radiographic signs that caused suspicion for recurrent disease were studied. Tissues were categorized into four groups: spectroscopically normal, pure tumor, mixed tumor and radiation necrosis, and pure radiation necrosis. Spectral data for choline (Cho), lipid-lactate (Lip-Lac), N-acetylaspartate, and creatine (Cr) were analyzed as Cho/normal Cr (nCr), Lip-Lac/Cho, Lip-Lac/nCr, N-acetylaspartate/Cho, N-acetylaspartate/nCr, and Cho/normal Cho (nCho). Stereotactic biopsies were obtained within 48 hours of 1H MRSI and were directly correlated digitally with 1H MRSI data. Logistic regression analysis was performed on the basis of data obtained from 99 1H MRSI observations to determine whether the 1H MRSI ratios varied according to tissue category. RESULTS 1H MRSI ratios were found to distinguish pure tumor from pure necrosis. The odds of a biopsy’s being pure tumor and having either a Cho/nCr value greater than 1.79 or a Lip-Lac/Cho value less than 0.75 are seven times the odds of that biopsy’s being pure necrosis (odds ratio, 7.00;P = 0.0136). The odds of a biopsy’s being pure necrosis and having either a Cho/nCr value less than 0.89 or a Cho/nCho value less than 0.66 are six times the odds of that biopsy’s being pure tumor (odds ratio, 5.71;P = 0.0329). The odds of a biopsy’s being pure necrosis and having either a Lip-Lac/Cho value greater than 1.36 or a Lip-Lac/nCr value greater than 2.84 are more than five times the odds of the biopsy’s being pure tumor (odds ratio, 5.25;P = 0.0322). In addition, although only marginally significant, Lip-Lac/Cho and Lip-Lac/nCr ratios distinguish pure tumor from pure necrosis. No values suggested that mixed specimens could be distinguished in a statistically significant way from either pure tumor or pure necrosis. CONCLUSION The data that we gathered suggest that metabolite ratios derived on the basis of 1H MRSI spectral patterns do allow reliable differential diagnostic statements to be made when the tissues are composed of either pure tumor or pure necrosis, but the spectral patterns are less definitive when tissues composed of varying degrees of mixed tumor and necrosis are examined.


Neurosurgery | 2007

Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: Descriptive effects of target anatomy and catheter positioning

John H. Sampson; Martin L. Brady; Neil A. Petry; David Croteau; Allan H. Friedman; Henry S. Friedman; Terence Z. Wong; Darell D. Bigner; Ira Pastan; Raj K. Puri; Christoph Pedain

OBJECTIVE Convection-enhanced delivery (CED) holds tremendous potential for drug delivery to the brain. However, little is known about the volume of distribution achieved within human brain tissue or how target anatomy and catheter positioning influence drug distribution. The primary objective of this study was to quantitatively describe the distribution of a high molecular weight agent by CED relative to target anatomy and catheter position in patients with malignant gliomas. METHODS Seven adult patients with recurrent malignant gliomas underwent intracerebral infusion of the tumor-targeted cytotoxin, cintredekin besudotox, concurrently with 123I-labeled human serum albumin. High-resolution single-photon emission computed tomographic images were obtained at 24 and 48 hours and were coregistered with magnetic resonance imaging scans. The distribution of 123I-labeled human serum albumin relative to target anatomy and catheter position was analyzed. RESULTS Intracerebral CED infusions were well-tolerated and some resulted in a broad distribution of 123I-labeled human serum albumin, but target anatomy and catheter positioning had a significant influence on infusate distribution even within non-contrast-enhancing areas of brain. Intratumoral infusions were anisotropic and resulted in limited coverage of the enhancing tumor area and adjacent peritumoral regions. CONCLUSIONS CED has the potential to deliver high molecular weight agents into tumor-infiltrated brain parenchyma with volumes of distribution that are clinically relevant. Target tissue anatomy and catheter position are critical parameters in optimizing drug delivery.


Journal of Neurosurgery | 2007

Real-time image-guided direct convective perfusion of intrinsic brainstem lesions: Technical note

Russell R. Lonser; Katherine E. Warren; Zenaide M. N. Quezado; R. Aaron Robison; Stuart Walbridge; Raphael Schiffman; Marsha J. Merrill; Marion L. Walker; Deric M. Park; David Croteau; Roscoe O. Brady; Edward H. Oldfield

Recent preclinical studies have demonstrated that convection-enhanced delivery (CED) can be used to perfuse the brain and brainstem with therapeutic agents while simultaneously tracking their distribution using coinfusion of a surrogate magnetic resonance (MR) imaging tracer. The authors describe a technique for the successful clinical application of this drug delivery and monitoring paradigm to the brainstem. Two patients with progressive intrinsic brainstem lesions (one with Type 2 Gaucher disease and one with a diffuse pontine glioma) were treated with CED of putative therapeutic agents mixed with Gd-diethylenetriamene pentaacetic acid (DTPA). Both patients underwent frameless stereotactic placement of MR imaging-compatible outer guide-inner infusion cannulae. Using intraoperative MR imaging, accurate cannula placement was confirmed and real-time imaging during infusion clearly demonstrated progressive filling of the targeted region with the drug and Gd-DTPA infusate. Neither patient had clinical or imaging evidence of short- or long-term infusate-related toxicity. Using this technique, CED can be used to safely perfuse targeted regions of diseased brainstem with therapeutic agents. Coinfused imaging surrogate tracers can be used to monitor and control the distribution of therapeutic agents in vivo. Patients with a variety of intrinsic brainstem and other central nervous system disorders may benefit from a similar treatment paradigm.


Neurosurgery | 2007

Convection-enhanced delivery of cintredekin besudotox (interleukin-13- PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: Phase 1 study of final safety results

Michael A. Vogelbaum; John H. Sampson; Sandeep Kunwar; Susan M. Chang; Mark E. Shaffrey; Anthony L. Asher; Frederick F. Lang; David Croteau; Kristen Parker; Amy Y. Grahn; Jeffrey W. Sherman; S. Rafat Husain; Raj K. Puri

OBJECTIVECintredekin besudotox (CB), a recombinant cytotoxin consisting of interleukin-13 and truncated Pseudomonas exotoxin, binds selectively to interleukin-13Rα2 receptors overexpressed by malignant gliomas. This study assessed the safety of CB administered by convection-enhanced delivery followed by standard external beam radiation therapy (EBRT) with or without temozolomide (Temodar; Schering-Plough, Kenilworth, NJ) in patients with newly diagnosed malignant gliomas. METHODSAfter gross total resection of the tumor, two to four intraparenchymal catheters were stereotactically placed and CB (0.25 or 0.5 μg/mL) was infused for 96 hours. This was followed, 10 to 14 days later, by EBRT (5940–6100 cGy, 5 d/wk for 6–7 wk) with or without temozolomide (75 mg/m2/d, 7 d/wk during EBRT). Safety was assessed during an 11-week observation period after catheter placement RESULTSTwenty-two patients (12 men, 10 women; median age, 55 yr; 21 with glioblastoma multiforme and one with an anaplastic mixed oligoastrocytoma) were enrolled. None of the patients experienced dose-limiting toxicities in the first two cohorts (0.25 μg/mL CB + EBRT [n = 3] and 0.25 μg/mL CB + EBRT + temozolomide [n = 3]). One patient experienced a dose-limiting toxicity (Grade 4 seizure) in the third cohort (0.5 μg/mL CB + EBRT [n = 6]). Six patients in the final cohort (0.5 μg/mL CB + EBRT + temozolomide [n = 10]) completed treatment, and one patient experienced a dose-limiting toxicity (Grade 3 aphasia and confusion). Four patients were not considered evaluable for a dose decision and were replaced. CB related adverse events occurring in more than one patient were fatigue, gait disturbance, nystagmus, and confusion. No Grade 3 to 4 hematological toxicities were observed. CONCLUSIONCB (0.5 μg/mL) administered via convection-enhanced delivery before standard radiochemotherapy seems to be well tolerated in adults with newly diagnosed malignant gliomas. Further clinical study assessment is warranted.


Neuro-oncology | 2007

Clinical utility of a patient-specific algorithm for simulating intracerebral drug infusions

John H. Sampson; Raghu Raghavan; Martin L. Brady; James M. Provenzale; James E. Herndon; David Croteau; Allan H. Friedman; David A. Reardon; R. Edward Coleman; Terence Z. Wong; Darell D. Bigner; Ira Pastan; María Inmaculada Rodríguez-Ponce; Philipp Tanner; Raj K. Puri; Christoph Pedain

Convection-enhanced delivery (CED) is a novel drug delivery technique that uses positive infusion pressure to deliver therapeutic agents directly into the interstitial spaces of the brain. Despite the promise of CED, clinical trials have demonstrated that target-tissue anatomy and patient-specific physiology play a major role in drug distribution using this technique. In this study, we retrospectively tested the ability of a software algorithm using MR diffusion tensor imaging to predict patient-specific drug distributions by CED. A tumor-targeted cytotoxin, cintredekin besudotox (interleukin 13-PE38QQR), was coinfused with iodine 123-labeled human serum albumin (123I-HSA), in patients with recurrent malignant gliomas. The spatial distribution of 123I-HSA was then compared to a drug distribution simulation provided by the software algorithm. The algorithm had a high sensitivity (71.4%) and specificity (100%) for identifying the high proportion (7 of 14) of catheter trajectories that failed to deliver drug into the desired anatomical region (p = 0.021). This usually occurred when catheter trajectories crossed deep sulci, resulting in leak of the infusate into the subarachnoid cerebrospinal fluid space. The mean concordance of the volume of distribution at the 50% isodose level between the actual 123I-HSA distribution and simulation was 65.75% (95% confidence interval [CI], 52.0%-79.5%), and the mean maximal inplane deviation was less than 8.5 mm (95% CI, 4.0-13.0 mm). The use of this simulation algorithm was considered clinically useful in 84.6% of catheters. Routine use of this algorithm, and its further developments, should improve prospective selection of catheter trajectories, and thereby improve the efficacy of drugs delivered by this promising technique.


Technology in Cancer Research & Treatment | 2006

Convection-enhanced Delivery of Interleukin-13 Receptor-directed Cytotoxin for Malignant Glioma Therapy*:

Mitomu Kioi; Syed R. Husain; David Croteau; Sandeep Kunwar; Raj K. Puri

The treatment of patients with malignant brain tumors, in particular glioblastoma multiforme (GBM) is very challenging because of their diffuse infiltrative nature and the cytological heterogeneity. The median survival of patients with newly diagnosed GBM is only 12–15 months, and only 8–12% of them survive for two years. Novel approaches for brain tumor therapy are needed. Recently, targeted therapies have emerged as promising modality for cancer targeting. We have discovered that high affinity plasma membrane receptor for interleukin-13 (IL-13), an immune regulatory cytokine, is over-expressed in 60–80% of malignant brain tumors. To target these IL-13R, we generated a chimeric fusion protein, composed of human IL-13 and mutated Pseudomonas exotoxin (PE), termed IL-13 cytotoxin (IL 13-PE), and tested its cytotoxicity to IL-13R-expressing GBM cells. IL-13 cytotoxin was highly potent and selective in killing IL-13R-expressing GBM cells. In contrast, normal cells including brain, immune, and endothelial cells were generally not affected by this cytotoxin due to no or low expression of IL-13R. In vivo pre-clinical studies for safety and toxicity were also performed in mice, rats, and monkeys, and IL-13 cytotoxin was found to be well tolerated by both systemic and intracerebral administrations. IL-13 cytotoxin was found to mediate remarkable efficacy in animal models of human brain tumors. Encouraged by these pre-clinical studies, four Phase 1/2 clinical trials in adult patients with recurrent malignant glioma have been completed. These clinical trials involved convection-enhanced delivery (CED) of IL-13 cytotoxin either intratumoral or intraparenchymal after resection of tumor. CED is a novel loco-regional drug delivery method for intracranial tumors that relies on a continuous pressure gradient to distribute drug into interstitial space. This route of IL-13 cytotoxin administration appears to be very well tolerated and have a good risk-benefit profile. Most recently, a randomized controlled Phase 3 clinical trial (PRECISE) with intraparenchymal IL-13 cytotoxin administration was completed and subjects are being monitored for safety and survival.


American Journal of Roentgenology | 2007

Induction of hyperintense signal on t2-weighted MR images correlates with infusion distribution from intracerebral convection-enhanced delivery of a tumor-targeted cytotoxin

John H. Sampson; Raghu Raghavan; James M. Provenzale; David Croteau; David A. Reardon; R. Edward Coleman; Inmaculada Rodríguez Ponce; Ira Pastan; Raj K. Puri; Christoph Pedain

OBJECTIVE Convection-enhanced delivery is a promising approach to intracerebral drug delivery in which a fluid pressure gradient is used to infuse therapeutic macromolecules through an indwelling catheter into the interstitial spaces of the brain. Our purpose was to test the hypothesis that hyperintense signal changes on T2-weighted images produced by such infusions can be used to track drug distribution. SUBJECTS AND METHODS Seven adults with recurrent malignant glioma underwent concurrent intracerebral infusions of the tumor-targeted cytotoxin cintredekin besudotox and 123I-labeled human serum albumin. The agents were administered through a total of 18 catheters among the seven patients. Adequacy of distribution of drug was determined by evidence of distribution of 123I-labeled human serum albumin on SPECT images coregistered with MR images. Qualitative analysis was performed by three blinded observers. Quantitative analysis also was performed. RESULTS Infusions into 12 catheters produced intraparenchymal distribution as seen on SPECT images, but infusions into six catheters did not. At qualitative assessment of signal changes on MR images, reviewers correctly predicted which catheters would produce extraparenchymal distribution and which catheters would produce parenchymal distribution. Of the 12 infusions that produced intraparenchymal distribution, four catheters had been placed in regions of relatively normal signal intensity and produced regions of newly increased signal intensity, the volume of which highly correlated with the volume and geometry of distribution on SPECT (r2 = 0.9502). Eight infusions that produced intraparenchymal distribution were performed in regions of preexisting hyperintense signal. In these brains, additional signal changes were always produced, but quantitative correlations between areas of newly increased signal intensity and the volume and geometry of distribution on SPECT could not be established. CONCLUSION Convection-enhanced infusions frequently do not provide intraparenchymal drug distribution, and these failures can be identified with MRI soon after infusion. When infusions are performed into regions of normal signal intensity, development of hyperintense signal change strongly correlates with the volume and geometry of distribution of infusate.


Neurology | 2001

Response to cancer therapy in a patient with a paraneoplastic choreiform disorder

David Croteau; Alaa Owainati; Josep Dalmau; Lisa R. Rogers

The authors report a patient with chorea and multifocal neurologic abnormalities associated with a small-cell lung carcinoma. A previously unreported antibody directed at a 76-kD neuronal protein antigen was identified in both serum and CSF. Antitumor treatment resulted in dramatic and sustained clinical neurologic and serologic responses.

Collaboration


Dive into the David Croteau's collaboration.

Top Co-Authors

Avatar

Raj K. Puri

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandeep Kunwar

University of San Francisco

View shared research outputs
Top Co-Authors

Avatar

Susan M. Chang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Mikkelsen

Henry Ford Health System

View shared research outputs
Top Co-Authors

Avatar

Edward H. Oldfield

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge