Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David D. Thomas is active.

Publication


Featured researches published by David D. Thomas.


Journal of Molecular Biology | 1990

Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay

Yoshie Harada; Katsuhiko Sakurada; Toshiaki Aoki; David D. Thomas; Toshio Yanagida

In order to study the mechanochemical coupling in actomyosin energy transduction, the sliding distance of an actin filament induced by one ATP hydrolysis cycle was obtained by using an in vitro movement assay that permitted quantitative and simultaneous measurements of (1) the movements of single fluorescently labeled actin filaments on myosin bound to coverslip surfaces and (2) the ATPase rates. The sliding distance was determined as (the working stroke time in one ATPase cycle, tws) x (the filament velocity, v). tws was obtained from the ATPase turnover rate of myosin during the sliding (kt), the ATP hydrolysis time (delta t) and the ON-rate at which myosin heads enter into the working stroke state when they encounter actin (kON); tws approximately 1/kt-delta t-1/kON. kt was estimated from the ATPase rates of the myosin-coated surface during the sliding of actin filaments. delta t has been determined as less than 1/100 per second, kON was estimated by analyzing the movements of very short (40 nm) filaments. The resulting sliding distance during one ATP hydrolysis cycle near zero load was greater than 100 nm, which is about ten times longer than that expected for a single attachment-detachment cycle between an actin and a myosin head. This leads to the conclusion that the coupling between the ATPase and attachment-detachment cycles is not determined rigidly in a one-to-one fashion.


Journal of Chemical Physics | 1976

Rotational diffusion studied by passage saturation transfer electron paramagnetic resonance

David D. Thomas; Larry R. Dalton; James S. Hyde

A comprehensive description is given of instrumental and theoretical methods employed to make accurate measurements of rotational correlation times using passage saturation transfer electron paramagnetic resonance (ST–EPR). Saturation transfer methods extend by several orders of magnitude the sensitivity of EPR to very slow motion; for example, for nitroxide spin labels, correlation times as long as 10−3 sec become accessible to measurement. Two ST–EPR detection schemes are discussed in detail: dispersion, detected 90° out of phase with respect to the 100 kHz field modulation, and absorption, detected 90° out of phase with respect to the second harmonic of the 50 kHz field modulation. The sensitivities of these configurations are illustrated with experimental spectra obtained from a system obeying isotropic Brownian rotational diffusion; namely, maleimide spin labeled human oxyhemoglobin in aqueous glycerol solutions. Two theoretical approaches, one employing coupled Bloch equations and the other utilizing the stochastic Liouville equation for the density matrix with the orientation variables treated by transition rate matrix or orthogonal eigenfunction expansion methods, are in excellent agreement with each other and with model system spectra. Both experimental and theoretical spectra depend on a number of relaxation processes other than rotational diffusion; consequently, considerable care must be taken to ensure the accuracy of measuredrotational correlation times. Although the absorption method is currently the more sensitive and convenient one to apply with most conventional (commercial) spectrometers, the dispersion ST–EPR method is potentially more powerful, providing strong motivation for future technological efforts to decrease noise levels in dispersion experiments.


Mechanisms of Development | 2001

Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2

Elazar Zelzer; Donald J. Glotzer; Christine Hartmann; David D. Thomas; Naomi Fukai; Shay Soker; Björn Olsen

Vascular endothelial growth factor (VEGF) is a critical regulator of angiogenesis during development, but little is known about the factors that control its expression. We provide the first example of tissue specific loss of VEGF expression as a result of targeting a single gene, Cbfa1/Runx2. During endochondral bone formation, invasion of blood vessels into cartilage is associated with upregulation of VEGF in hypertrophic chondrocytes and increased expression of VEGF receptors in the perichondrium. This upregulation is lacking in Cbfa1 deficient mice, and cartilage angiogenesis does not occur. Finally, over-expression of Cbfa1 in fibroblasts induces an increase in their VEGF mRNA level and protein production by stimulating VEGF transcription. The results demonstrate that Cbfa1 is a necessary component of a tissue specific genetic program that regulates VEGF during endochondral bone formation.


Biophysical Journal | 1980

Orientation of spin-labeled myosin heads in glycerinated muscle fibers

David D. Thomas; Roger Cooke

We have used electron paramagnetic resonance (EPR) spectra to study spin labels selectively and rigidly attached to myosin heads in glycerinated rabbit psoas muscle fibers. Because the angle between the magnetic field and the principal axis of the probe determines the position of the EPR absorption line, spectra from labeled fibers oriented parallel to the magnetic field yielded directly the distribution of spin label orientations relative to the fiber axis. Two spin labels, having reactivities resembling iodoacetamide (IASL) and maleimide (MSL), were used. In rigor fibers with complete filament overlap, both labels displayed a narrow angular distribution, full width at half maximum approximately 15 degrees, centered at angles of 68 degrees (IASL) and 82 degrees (MSL). Myosin subfragments (heavy meromyosin and subfragment-1) were labeled and allowed to diffuse into fibers. The resulting spectra showed the same sharp angular distribution that was found for the labeled fibers. Thus is appears that virtually all myosin heads in a rigor fiber have the same orientation relative to the fiber axis, and this orientation is determined by the actomyosin bond. Experiments with stretched fibers indicated that the spin labels on the fraction of heads not interacting with actin filaments had a broad angular distribution. Addition of ATP to unstretched fibers under relaxing conditions produced orientational disorder, resulting in a spectrum almost indistinguishable from that of an isotropic distribution of probes. Addition of either an ATP analog (AMPPNP) or pyrophosphate produced partial disorder. That is a fraction of the probes remained sharply oriented as in rigor while a second fraction was in a disordered distribution similar to that of relaxed fibers.


Biophysical Journal | 1999

A Fluorescence Energy Transfer Method for Analyzing Protein Oligomeric Structure: Application to Phospholamban

Ming Li; Laxma G. Reddy; Roberta Bennett; Norberto D. Silva; Larry R. Jones; David D. Thomas

We have developed a method using fluorescence energy transfer (FET) to analyze protein oligomeric structure. Two populations of a protein are labeled with fluorescent donor and acceptor, respectively, then mixed at a defined donor/acceptor ratio. A theoretical simulation, assuming random mixing and association among protein subunits in a ring-shaped homo-oligomer, was used to determine the dependence of FET on the number of subunits, the distance between labeled sites on different subunits, and the fraction of subunits remaining monomeric. By measuring FET as a function of the donor/acceptor ratio, the above parameters of the oligomeric structure can be resolved over a substantial range of their values. We used this approach to investigate the oligomeric structure of phospholamban (PLB), a 52-amino acid protein in cardiac sarcoplasmic reticulum (SR). Phosphorylation of PLB regulates the SR Ca-ATPase. Because PLB exists primarily as a homopentamer on sodium dodecyl sulfate polyacrylamide gel electrophoresis, it has been proposed that the pentameric structure of PLB is important for its regulatory function. However, this hypothesis must be tested by determining directly the oligomeric structure of PLB in the lipid membrane. To accomplish this goal, PLB was labeled at Lys-3 in the cytoplasmic domain, with two different amine-reactive donor/acceptor pairs, which gave very similar FET results. In detergent solutions, FET was not observed unless the sample was first boiled to facilitate subunit mixing. In lipid bilayers, FET was observed at 25 degrees C without boiling, indicating a dynamic equilibrium among PLB subunits in the membrane. Analysis of the FET data indicated that the dye-labeled PLB is predominantly in oligomers having at least 8 subunits, that 7-23% of the PLB subunits are monomeric, and that the distance between dyes on adjacent PLB subunits is about 10 A. A point mutation of PLB (L37A) that runs as monomer on SDS-PAGE showed no energy transfer, confirming its monomeric state in the membrane. We conclude that FET is a powerful approach for analyzing the oligomeric structure of PLB, and this method is applicable to other oligomeric proteins.


Journal of Molecular Biology | 1979

Rotational dynamics of spin-labeled F-actin in the sub-millisecond time range.

David D. Thomas; John C. Seidel; John Gergely

The rotational motions of F-ai HMM and S-l are equally effective, on a molar basis, in slowing this rotation and both produce their maximal effect at a ratio of about one molecule of HMM or S- 1 per ten actin monomers. With chymotryptic S-1, the effect is partially reversed at higher concentrations. With S- 1 prepared with papain in the presence of Mg2 + : the reversal is smaller, while with HMM or myosin there is no reversal at higher concentrations. Tropomyosin slightly decreases the aetin rotational mobility, and the addition of HMM to the actin-tropomyosin complex produces a further slowing. The rotational correlation time for acto-HMM is the same whether the spin-label is on actin or HMM, indicating that the rotation of the head region of HMM when bound to F-a&in is controlled by a mode of rotation within the F-actin filaments.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Spectroscopic validation of the pentameric structure of phospholamban.

Nathaniel J. Traaseth; Raffaello Verardi; Kurt D. Torgersen; Christine B. Karim; David D. Thomas; Gianluigi Veglia

Phospholamban (PLN) regulates calcium translocation within cardiac myocytes by shifting sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) affinity for calcium. Although the monomeric form of PLN (6 kDa) is the principal inhibitory species, recent evidence suggests that the PLN pentamer (30 kDa) also is able to bind SERCA. To date, several membrane architectures of the pentamer have been proposed, with different topological orientations for the cytoplasmic domain: (i) extended from the bilayer normal by 50–60°; (ii) continuous α-helix tilted 28° relative to the bilayer normal; (iii) pinwheel geometry, with the cytoplasmic helix perpendicular to the bilayer normal and in contact with the surface of the bilayer; and (iv) bellflower structure, in which the cytoplasmic domain helix makes ≈20° angle with respect to the membrane bilayer normal. Using a variety of cell membrane mimicking systems (i.e., lipid vesicles, oriented lipid bilayers, and detergent micelles) and a combination of multidimensional solution/solid-state NMR and EPR spectroscopies, we tested the different structural models. We conclude that the pinwheel topology is the predominant conformation of pentameric PLN, with the cytoplasmic domain interacting with the membrane surface. We propose that the interaction with the bilayer precedes SERCA binding and may mediate the interactions with other proteins such as protein kinase A and protein phosphatase 1.


Biophysical Journal | 1980

Submillisecond rotational dynamics of spin-labeled myosin heads in myofibrils.

David D. Thomas; Shin'ichi Ishiwata; John C. Seidel; John Gergely

The rotational motion of crossbridges, formed when myosin heads bind to actin, is an essential element of most molecular models of muscle contraction. To obtain direct information about this molecular motion, we have performed saturation transfer EPR experiments in which spin labels were selectively and rigidly attached to myosin heads in purified myosin and in glycerinated myofibrils. In synthetic myosin filaments, in the absence of actin, the spectra indicated rapid rotational motion of heads characterized by an effective correlation time of 10 microseconds. By contrast, little or no submillisecond rotational motion was observed when isolated myosin heads (subfragment-1) were attached to glass beads or to F-actin, indicating that the bond between the myosin head and actin is quite rigid on this time scale. A similar immobilization of heads was observed in spin-labeled myofibrils in rigor. Therefore, we conclude that virtually all of the myosin heads in a rigor myofibril are immobilized, apparently owing to attachment of heads to actin. Addition of ATP to myofibrils, either in the presence or absence of 0.1 mM Ca2+, produced spectra similar to those observed for myosin filaments in the absence of actin, indicating rapid submillisecond rotational motion. These results indicate that either (a) most of the myosin heads are detached at any instant in relaxed or activated myofibrils or (b) attached heads bearing the products of ATP hydrolysis rotate as rapidly as detached heads.


Physical Review Letters | 1995

Big Bang nucleosynthesis in crisis

Naoya Hata; Robert J. Scherrer; Gary Steigman; David D. Thomas; Terry P. Walker; Sidney A. Bludman; Paul Langacker

A new evaluation of the constraint on the number of light neutrino species ({ital N}{sub {nu}}) from big bang nucleosynthesis suggests a discrepancy between the predicted light element abundances and those inferred from observations, unless the inferred primordial {sup 4}He abundance has been underestimated by 0.014{plus_minus}0.004 (1{sigma}) or less than 10% (95% C.L.) of {sup 3}He survives stellar processing. With the quoted systematic errors in the observed abundances and a conservative chemical evolution parametrization, the best fit to the combined data is {ital N}{sub {nu}}=2.1{plus_minus}0.3 (1{sigma}) and the upper limit is {ital N}{sub {nu}}{lt}2.6 (95% C.L.). The data are inconsistent with the standard model ({ital N}{sub {nu}}=3) at the 98.6% C.L. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.


Journal of Molecular Biology | 1982

Transverse location of the retinal chromophore of rhodopsin in rod outer segment disc membranes.

David D. Thomas; Lubert Stryer

Diffusion-enhanced fluorescence energy transfer was used to study the structure of photoreceptor membranes from bovine retinal rod outer segments. The fluorescent energy donor was Tb3+ chelated to dipicolinate and the acceptor was the 11-cis retinal chromophore of rhodopsin in vesicles made from disc membranes. The rapid-diffusion limit for energy transfer was attained in these experiments because of the long excited state lifetime of the terbium donor (~2 ms). Under these conditions, energy transfer is very sensitive to a, the distance of closest approach between the donor and acceptor (Thomas et al., 1978). Vesicles containing terbium dipicolinate in their inner aqueous space were prepared by sonicating disc membranes in the presence of this chelate and chromatographing this mixture on a gel filtration column. The sidedness of rhodopsin in these vesicles was the same as in native disc membranes. The transfer efficiency from terbium to retinal in this sample was 43%. For an R0 value of 46.7 A and an average vesicle diameter of 650 A, this corresponds to an a value of 22 A from the inner aqueous space of the vesicle. The distance of closest approach from the external aqueous space, determined by adding terbium dipicolinate to a suspension of already formed vesicles, was found to be 28 A. These values of a show that the retinal chromophore is far from both aqueous surfaces of the disc membrane. Hence, the transverse location of the retinal chromophore is near the center of the hydrophobic core of the disc membrane. These findings suggest that conformational changes induced by photoisomerization are transmitted through a distance of at least 20 A within rhodopsin to trigger subsequent events in visual excitation.

Collaboration


Dive into the David D. Thomas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuri E. Nesmelov

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge