Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David D.W. Twa is active.

Publication


Featured researches published by David D.W. Twa.


Blood | 2014

Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma.

David D.W. Twa; Fong Chun Chan; Susana Ben-Neriah; Bruce Woolcock; Anja Mottok; King Tan; Graham W. Slack; Jay Gunawardana; Raymond S. Lim; Andrew McPherson; Robert Kridel; Adele Telenius; David W. Scott; Kerry J. Savage; Sohrab P. Shah; Randy D. Gascoyne; Christian Steidl

The pathogenesis of primary mediastinal large B-cell lymphoma (PMBCL) is incompletely understood. Recently, specific genotypic and phenotypic features have been linked to tumor cell immune escape mechanisms in PMBCL. We studied 571 B-cell lymphomas with a focus on PMBCL. Using fluorescence in situ hybridization here, we report that the programmed death ligand (PDL) locus (9p24.1) is frequently and specifically rearranged in PMBCL (20%) as compared with diffuse large B-cell lymphoma, follicular lymphoma, and Hodgkin lymphoma. Rearrangement was significantly correlated with overexpression of PDL transcripts. Utilizing high-throughput sequencing techniques, we characterized novel translocations and chimeric fusion transcripts involving PDLs at base-pair resolution. Our data suggest that recurrent genomic rearrangement events underlie an immune privilege phenotype in a subset of B-cell lymphomas.


The Journal of Pathology | 2015

Recurrent genomic rearrangements in primary testicular lymphoma

David D.W. Twa; Anja Mottok; Fong Chun Chan; Susana Ben-Neriah; Bruce Woolcock; King Tan; Andrew J. Mungall; Helen McDonald; Yongjun Zhao; Raymond S. Lim; Brad H. Nelson; Katy Milne; Sohrab P. Shah; Ryan D. Morin; Marco A. Marra; David W. Scott; Randy D. Gascoyne; Christian Steidl

Primary testicular diffuse large B cell lymphoma (PTL) is an aggressive malignancy that occurs in the immune‐privileged anatomical site of the testis. We have previously shown that structural genomic rearrangements involving the MHC class II transactivator CIITA and programmed death ligands (PDLs) 1 and 2 are frequent across multiple B cell lymphoma entities. Specifically in PTL, we found rearrangements in the PDL locus by fluorescence in situ hybridization (FISH). However, breakpoint anatomy and rearrangement partners were undetermined, while CIITA rearrangements had not been reported previously in PTL. Here, we performed bacterial artificial chromosome capture sequencing on three archival, formalin‐fixed, paraffin‐embedded tissue biopsies, interrogating 20 known rearrangement hotspots in B cell lymphomas. We report novel CIITA, FOXP1 and PDL rearrangements involving IGHG4, FLJ45248, RFX3, SMARCA2 and SNX29. Moreover, we present immunohistochemistry data supporting the association between PDL rearrangements and increased protein expression. Finally, using FISH, we show that CIITA (8/82; 10%) and FOXP1 (5/74; 7%) rearrangements are recurrent in PTL. In summary, we describe rearrangement frequencies and novel rearrangement partners of the CIITA, FOXP1 and PDL loci at base‐pair resolution in a rare, aggressive lymphoma. Our data suggest immune‐checkpoint inhibitor therapy as a promising intervention for PTL patients harbouring PDL rearrangements. Copyright


Blood | 2016

Comprehensive characterization of programmed death ligand structural rearrangements in B-cell non-Hodgkin lymphomas

Lauren C. Chong; David D.W. Twa; Anja Mottok; Susana Ben-Neriah; Bruce Woolcock; Yongjun Zhao; Kerry J. Savage; Marco A. Marra; David W. Scott; Randy D. Gascoyne; Ryan D. Morin; Andrew J. Mungall; Christian Steidl

Programmed death ligands (PDLs) are immune-regulatory molecules that are frequently affected by chromosomal alterations in B-cell lymphomas. Although PDL copy-number variations are well characterized, a detailed and comprehensive analysis of structural rearrangements (SRs) and associated phenotypic consequences is largely lacking. Here, we used oligonucleotide capture sequencing of 67 formalin-fixed paraffin-embedded tissues derived from primary B-cell lymphomas and 1 cell line to detect and characterize, at base-pair resolution, SRs of the PDL locus (9p24.1; harboring PDL1/CD274 and PDL2/PDCD1LG2). We describe 36 novel PDL SRs, including 17 intrachromosomal events (inversions, duplications, deletions) and 19 translocations involving BZRAP-AS1, CD44, GET4, IL4R, KIAA0226L, MID1, RCC1, PTPN1 and segments of the immunoglobulin loci. Moreover, analysis of the precise chromosomal breakpoints reveals 2 distinct cluster breakpoint regions (CBRs) within either CD274 (CBR1) or PDCD1LG2 (CBR2). To determine the phenotypic consequences of these SRs, we performed immunohistochemistry for CD274 and PDCD1LG2 on primary pretreatment biopsies and found that PDL SRs are significantly associated with PDL protein expression. Finally, stable ectopic expression of wild-type PDCD1LG2 and the PDCD1LG2-IGHV7-81 fusion showed, in coculture, significantly reduced T-cell activation. Taken together, our data demonstrate the complementary utility of fluorescence in situ hybridization and capture sequencing approaches and provide a classification scheme for PDL SRs with implications for future studies using PDL immune-checkpoint inhibitors in B-cell lymphomas.


Leukemia & Lymphoma | 2015

Structural genomic alterations in primary mediastinal large B-cell lymphoma.

David D.W. Twa; Christian Steidl

Primary mediastinal large B-cell lymphoma (PMBCL) is an aggressive non-Hodgkin lymphoma that displays phenotypic and genotypic similarity to Hodgkin lymphoma and diffuse large B-cell lymphoma. Studies using genome-wide discovery tools have revealed specific, recurrent structural aberrations as critical somatic events in the pathogenesis of PMBCL. These structural alterations prominently include transcript and protein altering rearrangements and copy number variations of the programmed death ligands 1 (CD274) and 2 (PDCD1LG2), CIITA, JAK2 and REL. Importantly, evidence is emerging that these acquired structural genomic changes, in synergy with other somatic alterations, contribute to PMBCL pathogenesis by influencing tumor microenvironment interactions that favor malignant B-cell growth. The means by which these rearrangements arise are not well understood. However, analysis of breakpoint junctions at base-pair resolution provides preliminary insight into putative rearrangement mechanisms. As the field also anticipates predictive value and therapeutic targeting of structural changes involving programmed death ligands and JAK2, a review of therapies that will likely shape future lymphoma treatment is needed.


Journal of Clinical Investigation | 2015

The Canadian clinician-scientist training program must be reinstated

David D.W. Twa; Jordan W. Squair; Michael A. Skinnider; Jennifer X. Ji

Clinical investigators within the Canadian and international communities were shocked when the Canadian Institutes of Health Research (CIHR) announced that their funding for the MD/PhD program would be terminated after the 2015-2016 academic year. The program has trained Canadian clinician-scientists for more than two decades. The cancellation of the program is at odds with the CIHRs mandate, which stresses the translation of new knowledge into improved health for Canadians, as well as with a series of internal reports that have recommended expanding the program. Although substantial evidence supports the analogous Medical Scientist Training Program in the United States, no parallel analysis of the MD/PhD program has been performed in Canada. Here, we highlight the long-term consequences of the programs cancellation in the context of increased emphasis on translational research. We argue that alternative funding sources cannot ensure continuous support for students in clinician-scientist training programs and that platform funding of the MD/PhD program is necessary to ensure leadership in translational research.


Medical Education | 2018

Predictors of sustained research involvement among MD/PhD programme graduates

Michael A. Skinnider; David D.W. Twa; Jordan W. Squair; Norman D. Rosenblum; Christine D Lukac

MD/PhD programmes provide structured paths for physician‐scientist training. However, considerable proportions of graduates of these programmes do not pursue careers in research consistent with their training.


Blood | 2018

Somatic IL4R Mutations in Primary Mediastinal Large B-cell lymphoma lead to constitutive JAK-STAT signaling activation

Elena Viganò; Jay Gunawardana; Anja Mottok; Tessa Van Tol; Katina Mak; Fong Chun Chan; Lauren Chong; Elizabeth Chavez; Bruce Woolcock; Katsuyoshi Takata; David D.W. Twa; Hennady P. Shulha; Adele Telenius; Olga Kutovaya; Stacy S. Hung; Shannon Healy; Susana Ben-Neriah; Karen Leroy; Philippe Gaulard; Arjan Diepstra; Robert Kridel; Kerry J. Savage; Lisa M. Rimsza; Randy D. Gascoyne; Christian Steidl

Primary mediastinal large B-cell lymphoma (PMBCL) is a distinct subtype of diffuse large B-cell lymphoma thought to arise from thymic medullary B cells. Gene mutations underlying the molecular pathogenesis of the disease are incompletely characterized. Here, we describe novel somatic IL4R mutations in 15 of 62 primary cases of PMBCL (24.2%) and in all PMBCL-derived cell lines tested. The majority of mutations (11/21; 52%) were hotspot single nucleotide variants in exon 8, leading to an I242N amino acid change in the transmembrane domain. Functional analyses establish this mutation as gain of function leading to constitutive activation of the JAK-STAT pathway and upregulation of downstream cytokine expression profiles and B cell-specific antigens. Moreover, expression of I242N mutant IL4R in a mouse xenotransplantation model conferred growth advantage in vivo. The pattern of concurrent mutations within the JAK-STAT signaling pathway suggests additive/synergistic effects of these gene mutations contributing to lymphomagenesis. Our data establish IL4R mutations as novel driver alterations and provide a strong preclinical rationale for therapeutic targeting of JAK-STAT signaling in PMBCL.


CMAJ Open | 2017

Characteristics and outcomes of Canadian MD/PhD program graduates: a cross-sectional survey

Michael A. Skinnider; Jordan W. Squair; David D.W. Twa; Jennifer X. Ji; Alexandra Kuzyk; Xin Wang; Patrick E. Steadman; Kirill Zaslavsky; Ayan K. Dey; Mark J. Eisenberg; Ève-Reine Gagné; Kent T. HayGlass; James F. Lewis; Peter J. Margetts; D. Alan Underhill; Norman D. Rosenblum; Lynn A. Raymond

BACKGROUND Combined MD/PhD programs provide a structured path for physician-scientist training, but assessment of their success within Canada is limited by a lack of quantitative data. We collected outcomes data for graduates of Canadian MD/PhD programs. METHODS We developed and implemented a Web-based survey consisting of 41 questions designed to collect outcomes data for Canadian MD/PhD program alumni from 8 Canadian universities who had graduated before September 2015. Respondents were categorized into 2 groups according to whether they had or had not completed all training. RESULTS Of the 186 eligible alumni of MD/PhD programs, 139 (74.7%) completed the survey. A total of 136/138 respondents (98.6%) had completed or were currently completing residency training, and 66/80 (82%) had completed at least 1 postgraduate fellowship. Most (58 [83%]) of the 70 respondents who had completed all training were appointed as faculty at academic institutions, and 37 (53%) had been principal investigators on at least 1 recent funded project. Among the 58 respondents appointed at academic institutions, 44/57 (77%) dedicated at least 20% of their time to research, and 25/57 (44%) dedicated at least 50% to research. During their combined degree, 102/136 respondents (75.0%) published 3 or more first-author papers, and 133/136 (97.8%) matched with their first choice of specialty. The median length of physician-scientist training was 13.5 years. Most respondents graduated with debt despite having been supported by Canadian Institutes of Health Research MD/PhD studentships. INTERPRETATION Most Canadian MD/PhD program alumni pursued careers consistent with their physician-scientist training, which indicates that these programs are meeting their primary objective. Nevertheless, our findings highlight that a minority of these positions are research intensive; this finding warrants further study. Our data provide a baseline for future monitoring of the output of Canadian MD/PhD programs.


PLOS ONE | 2017

Cross-sectional-derived determinants of satisfaction with physician-scientist training among Canadian MD/PhD graduates

David D.W. Twa; Michael A. Skinnider; Jordan W. Squair; Christine D Lukac

Although MD/PhD programs require considerable commitment on behalf of students and learning institutions, they serve as an integral means of training future physician-scientists; individuals who engage in translational medicine. As attrition from these programs has longstanding effects on the community of translational medicine and comes at substantial cost to MD/PhD programs, we aimed to identify determinants that were associated with satisfaction among MD/PhD graduates, a feature that might inform on limiting program attrition. Anonymized data from a national survey of 139 Canadian MD/PhD alumni was analyzed. Factor analysis was conducted to evaluate the reliability of three questions that measured satisfaction and logistic regression was used to assess the association of outcomes with 17 independent determinants. Eighty-one percent of graduates were satisfied with MD/PhD training. Factor analysis confirmed the reliability of the questions measuring satisfaction. Determinants of self-reported satisfaction with physician-scientist training included co-authorship of more than six manuscripts during MD/PhD training. Additionally, protected research time at the place of current appointment was strongly associated with agreement that MD/PhD training had helped career progression. Demographic variables were not associated with any satisfaction indicator. Taken together, the majority of Canadian MD/PhD graduates are satisfied with their physician-scientist training. Project collaboration leading to co-authorships and protected research time were strongly associated with training satisfaction among graduates. If the value of collaboration can be realized among current and future physician-scientist trainees who are dissatisfied with their training, this might ultimately reduce program attrition.


Blood Reviews | 2017

The pathobiology of primary testicular diffuse large B-cell lymphoma: Implications for novel therapies

David D.W. Twa; Anja Mottok; Kerry J. Savage; Christian Steidl

Primary testicular lymphomas (PTL) are the most prevalent type of testicular cancer arising in men over the age of 60. PTL accounts for approximately 1-2% of all non-Hodgkin lymphomas and most present with localized disease but despite this, outcome is poor. The majority of cases represent an extranodal manifestation of diffuse large B-cell lymphoma (DLBCL), known as primary testicular DLBCL (PT-DLBCL). Gene expression profiling has established that over 75% of PT-DLBCLs resemble the activated B-cell-like (ABC) or non-germinal center subtype of nodal DLBCL. In distilling the specific mutational landscape and immunophenotypic profiles, immune-escape and sustained signalling emerge as prominent features of PT-DLBCL. These include genomic alterations arising within the core components of antigen presentation (CIITA, B2M, and HLA loci) and structural rearrangements of programmed death ligands 1 (CD274) and 2 (PDCD1LG2). Enrichment for somatic mutations within NF-κB pathway genes (MYD88, CD79B, NFKBIZ, BCL10, and MALT1) also feature prominently in PT-DLBCL. Taken together, the unique molecular and clinical characteristics of PT-DLBCL have informed on aspects of the distinct disease biology of this organotypic lymphoma that may guide rational therapeutic strategies.

Collaboration


Dive into the David D.W. Twa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce Woolcock

BC Cancer Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jordan W. Squair

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kerry J. Savage

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Michael A. Skinnider

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge