Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David D. Wagner is active.

Publication


Featured researches published by David D. Wagner.


Microbes and Infection | 2002

Antimicrobial resistance of foodborne pathogens.

David G. White; Shaohua Zhao; Shabbir Simjee; David D. Wagner; Patrick F. McDermott

Emergence of bacterial antimicrobial resistance has become a serious problem worldwide. While much of the resistance observed in human medicine is attributed to inappropriate use in humans, there is increasing evidence that antimicrobial use in animals selects for resistant foodborne pathogens that may be transmitted to humans as food contaminants.


Applied and Environmental Microbiology | 2002

Antimicrobial Resistance of Escherichia coli O157 Isolated from Humans, Cattle, Swine, and Food

Carl M. Schroeder; Cuiwei Zhao; Chitrita DebRoy; Jocelyn Torcolini; Shaohua Zhao; David G. White; David D. Wagner; Patrick F. McDermott; Robert D. Walker; Jianghong Meng

ABSTRACT A total of 361 Escherichia coli O157 isolates, recovered from humans, cattle, swine, and food during the years 1985 to 2000, were examined to better understand the prevalence of antimicrobial resistance among these organisms. Based on broth microdilution results, 220 (61%) of the isolates were susceptible to all 13 antimicrobials tested. Ninety-nine (27%) of the isolates, however, were resistant to tetracycline, 93 (26%) were resistant to sulfamethoxazole, 61 (17%) were resistant to cephalothin, and 48 (13%) were resistant to ampicillin. Highest frequencies of resistance occurred among swine isolates (n = 70), where 52 (74%) were resistant to sulfamethoxazole, 50 (71%) were resistant to tetracycline, 38 (54%) were resistant to cephalothin, and 17 (24%) were resistant to ampicillin. Based on the presence of Shiga toxin genes as determined by PCR, 210 (58%) of the isolates were identified as Shiga toxin-producing E. coli (STEC). Among these, resistance was generally low, yet 21 (10%) were resistant to sulfamethoxazole and 19 (9%) were resistant to tetracycline. Based on latex agglutination, 189 (52%) of the isolates were identified as E. coli O157:H7, among which 19 (10%) were resistant to sulfamethoxazole and 16 (8%) were resistant to tetracycline. The data suggest that selection pressure imposed by the use of tetracycline derivatives, sulfa drugs, cephalosporins, and penicillins, whether therapeutically in human and veterinary medicine or as prophylaxis in the animal production environment, is a key driving force in the selection of antimicrobial resistance in STEC and non-STEC O157.


The Journal of Infectious Diseases | 2002

Ciprofloxacin Resistance in Campylobacter jejuni Evolves Rapidly in Chickens Treated with Fluoroquinolones

Patrick F. McDermott; Sonya M. Bodeis; Linda L. English; David G. White; Robert D. Walker; Shaohua Zhao; Shabbir Simjee; David D. Wagner

Fluoroquinolones are commonly used to treat gastroenteritis caused by Campylobacter species. Domestically acquired fluoroquinolone-resistant Campylobacter infection has been documented recently in the United States. It has been proposed that the increase in resistance is due, in part, to the use of fluoroquinolones in poultry. In separate experiments, the effects of sarafloxacin and enrofloxacin treatment of Campylobacter jejuni-infected chickens on the development of ciprofloxacin resistance were measured. Fecal samples were collected before and after treatment and were cultured for C. jejuni. When enrofloxacin or sarafloxacin was used at US Food and Drug Administration-approved doses in broiler chickens, resistance developed rapidly and persisted in C. jejuni. MICs of ciprofloxacin increased from a base of 0.25 microg/mL to 32 microg/mL within the 5-day treatment time frame. These results show that the use of these drugs in chickens rapidly selects for resistant Campylobacter organisms and may result in less effective fluoroquinolone therapy for cases of human campylobacteriosis acquired from exposure to contaminated chicken.


Applied and Environmental Microbiology | 2003

Prevalence and Antimicrobial Resistance of Enterococcus Species Isolated from Retail Meats

Joshua R. Hayes; Linda L. English; Peggy J. Carter; Terry Proescholdt; Kyung Y. Lee; David D. Wagner; David G. White

ABSTRACT From March 2001 to June 2002, a total of 981 samples of retail raw meats (chicken, turkey, pork, and beef) were randomly obtained from 263 grocery stores in Iowa and cultured for the presence of Enterococcus spp. A total of 1,357 enterococcal isolates were recovered from the samples, with contamination rates ranging from 97% of pork samples to 100% of ground beef samples. Enterococcus faecium was the predominant species recovered (61%), followed by E. faecalis (29%), and E. hirae (5.7%). E. faecium was the predominant species recovered from ground turkey (60%), ground beef (65%), and chicken breast (79%), while E. faecalis was the predominant species recovered from pork chops (54%). The incidence of resistance to many production and therapeutic antimicrobials differed among enterococci recovered from retail meat samples. Resistance to quinupristin-dalfopristin, a human analogue of the production drug virginiamycin, was observed in 54, 27, 9, and 18% of E. faecium isolates from turkey, chicken, pork, and beef samples, respectively. No resistance to linezolid or vancomycin was observed, but high-level gentamicin resistance was observed in 4% of enterococci, the majority of which were recovered from poultry retail meats. Results indicate that Enterococcus spp. commonly contaminate retail meats and that dissimilarities in antimicrobial resistance patterns among enterococci recovered from different meat types may reflect the use of approved antimicrobial agents in each food animal production class.


Animal Biotechnology | 2002

THE FOOD SAFETY PERSPECTIVE OF ANTIBIOTIC RESISTANCE

Patrick F. McDermott; Shaohua Zhao; David D. Wagner; Shabbir Simjee; Robert D. Walker; David G. White

ABSTRACT Bacterial antimicrobial resistance in both the medical and agricultural fields has become a serious problem worldwide. Antibiotic resistant strains of bacteria are an increasing threat to animal and human health, with resistance mechanisms having been identified and described for all known antimicrobials currently available for clinical use. There is currently increased public and scientific interest regarding the administration of therapeutic and sub-therapeutic antimicrobials to animals, due primarily to the emergence and dissemination of multiple antibiotic resistant zoonotic bacterial pathogens. This issue has been the subject of heated debates for many years, however, there is still no complete consensus on the significance of antimicrobial use in animals, or resistance in bacterial isolates from animals, on the development and dissemination of antibiotic resistance among human bacterial pathogens. In fact, the debate regarding antimicrobial use in animals and subsequent human health implications has been going on for over 30 years, beginning with the release of the Swann report in the United Kingdom. The latest report released by the National Research Council (1998) confirmed that there were substantial information gaps that contribute to the difficulty of assessing potential detrimental effects of antimicrobials in food animals on human health. Regardless of the controversy, bacterial pathogens of animal and human origin are becoming increasingly resistant to most frontline antimicrobials, including expanded-spectrum cephalosporins, aminoglycosides, and even fluoroquinolones. The lions share of these antimicrobial resistant phenotypes is gained from extra-chromosomal genes that may impart resistance to an entire antimicrobial class. In recent years, a number of these resistance genes have been associated with large, transferable, extra-chromosomal DNA elements, called plasmids, on which may be other DNA mobile elements, such as transposons and integrons. These DNA mobile elements have been shown to transmit genetic determinants for several different antimicrobial resistance mechanisms and may account for the rapid dissemination of resistance genes among different bacteria. The increasing incidence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. Although much scientific information is available on this subject, many aspects of the development of antimicrobial resistance still remain uncertain. The emergence and dissemination of bacterial antimicrobial resistance is the result of numerous complex interactions among antimicrobials, microorganisms, and the surrounding environments. Although research has linked the use of antibiotics in agriculture to the emergence of antibiotic-resistant foodborne pathogens, debate still continues whether this role is significant enough to merit further regulation or restriction.


Emerging Infectious Diseases | 2002

Antimicrobial Resistance of Escherichia coli O26, O103, O111, O128, and O145 from Animals and Humans

Carl M. Schroeder; Jianghong Meng; Shaohua Zhao; Chitrita DebRoy; Jocelyn Torcolini; Cuiwei Zhao; Patrick F. McDermott; David D. Wagner; Robert D. Walker; David G. White

Susceptibilities to fourteen antimicrobial agents important in clinical medicine and agriculture were determined for 752 Escherichia coli isolates of serotypes O26, O103, O111, O128, and O145. Strains of these serotypes may cause urinary tract and enteric infections in humans and have been implicated in infections with Shiga toxin–producing E. coli (STEC). Approximately 50% of the 137 isolates from humans were resistant to ampicillin, sulfamethoxazole, cephalothin, tetracycline, or streptomycin, and approximately 25% were resistant to chloramphenicol, trimethoprim-sulfamethoxazole, or amoxicillin-clavulanic acid. Approximately 50% of the 534 isolates from food animals were resistant to sulfamethoxazole, tetracycline, or streptomycin. Of 195 isolates with STEC-related virulence genes, approximately 40% were resistant to sulfamethoxazole, tetracycline, or streptomycin. Findings from this study suggest antimicrobial resistance is widespread among E. coli O26, O103, O111, O128, and O145 inhabiting humans and food animals.


Applied and Environmental Microbiology | 2004

Multiple-Antibiotic Resistance of Enterococcus spp. Isolated from Commercial Poultry Production Environments

Joshua R. Hayes; Linda L. English; Lewis E. Carr; David D. Wagner; Sam W. Joseph

ABSTRACT The potential impact of food animals in the production environment on the bacterial population as a result of antimicrobial drug use for growth enhancement continues to be a cause for concern. Enterococci from 82 farms within a poultry production region on the eastern seaboard were isolated to establish a baseline of susceptibility profiles for a number of antimicrobials used in production as well as clinical environments. Of the 541 isolates recovered, Enterococcus faecalis (53%) and E. faecium (31%) were the predominant species, while multiresistant antimicrobial phenotypes were observed among all species. The prevalence of resistance among isolates of E. faecalis was comparatively higher among lincosamide, macrolide, and tetracycline antimicrobials, while isolates of E. faecium were observed to be more frequently resistant to fluoroquinolones and penicillins. Notably, 63% of the E. faecium isolates were resistant to the streptogramin quinupristin-dalfopristin, while high-level gentamicin resistance was observed only among the E. faecalis population, of which 7% of the isolates were resistant. The primary observations are that enterococci can be frequently isolated from the poultry production environment and can be multiresistant to antimicrobials used in human medicine. The high frequency with which resistant enterococci are isolated from this environment suggests that these organisms might be useful as sentinels to monitor the development of resistance resulting from the usage of antimicrobial agents in animal production.


Journal of Clinical Microbiology | 2001

High-frequency recovery of quinupristin-dalfopristin-resistant Enterococcus faecium isolates from the poultry production environment.

Joshua R. Hayes; Angela C McIntosh; Sadaf Qaiyumi; Judith A. Johnson; Linda L. English; Lewis E. Carr; David D. Wagner; Sam W. Joseph

ABSTRACT The occurrence of resistance to the streptogramin quinupristin-dalfopristin in Enterococcus faecium isolates from chickens on the Eastern Seaboard, was evaluated. Quinupristin-dalfopristin resistance was found in 51 to 78% ofE. faecium isolates from the food production environment. The high level of resistance in this organism suggests that this reservoir of resistance may compromise the therapeutic potential of quinupristin-dalfopristin.


Applied and Environmental Microbiology | 2005

Changes in Antimicrobial Susceptibility of Native Enterococcus faecium in Chickens Fed Virginiamycin

Patrick F. McDermott; Patti Cullen; Susannah K. Hubert; Shawn D. McDermott; Mary J. Bartholomew; Shabbir Simjee; David D. Wagner

ABSTRACT The extent of transfer of antimicrobial resistance from agricultural environments to humans is controversial. To assess the potential hazard posed by streptogramin use in food animals, this study evaluated the effect of virginiamycin exposure on antimicrobial resistance in Enterococcus faecium recovered from treated broilers. Four consecutive broiler feeding trials were conducted using animals raised on common litter. In the first three trials, one group of birds was fed virginiamycin continuously in feed at 20 g/ton, and a second group served as the nontreated control. In the fourth trial, antimicrobial-free feed was given to both groups. Fecal samples were cultured 1 day after chickens hatched and then at 1, 3, 5, and 7 weeks of age. Isolates from each time point were tested for susceptibility to a panel of different antimicrobials. Quinupristin/dalfopristin-resistant E. faecium appeared after 5 weeks of treatment in trial 1 and within 7 days of trials 2 to 4. Following removal of virginiamycin in trial 4, no resistant isolates were detected after 5 weeks. PCR failed to detect vat, vgb, or erm(B) in any of the streptogramin-resistant E. faecium isolates, whereas the msr(C) gene was detected in 97% of resistant isolates. In an experimental setting using broiler chickens, continuous virginiamycin exposure was required to maintain a stable streptogramin-resistant population of E. faecium in the animals. The bases of resistance could not be explained by known genetic determinants.


Foodborne Pathogens and Disease | 2013

Retrospective Analysis of Salmonella, Campylobacter, Escherichia coli, and Enterococcus in Animal Feed Ingredients

Beilei Ge; Patricia C. Lafon; Peggy J. Carter; Shawn D. McDermott; Jason Abbott; Althea Glenn; Sherry Ayers; Sharon Friedman; Joseph C. Paige; David D. Wagner; Shaohua Zhao; Patrick F. McDermott; Mark A. Rasmussen

The presence and antimicrobial susceptibility of foodborne pathogens and indicator organisms in animal feed are not well understood. In this study, a total of 201 feed ingredient samples (animal byproducts, n=122; plant byproducts, n=79) were collected in 2002 and 2003 from representative rendering plants and the oilseed (or cereal grain) industry across the United States. The occurrence and antimicrobial susceptibility of four bacterial genera (Salmonella, Campylobacter, Escherichia coli, and Enterococcus) were determined. Salmonella isolates were further characterized by serotyping and pulsed-field gel electrophoresis (PFGE). None of the samples yielded Campylobacter or E. coli O157:H7, whereas Salmonella, generic E. coli, and Enterococcus were present in 22.9%, 39.3%, and 86.6% of samples, respectively. A large percentage (47.8%) of Salmonella-positive samples harbored two serovars, and the vast majority (88.4%) of Enterococcus isolates were E. faecium. Animal byproducts had a significantly higher Salmonella contamination rate (34.4%) than plant byproducts (5.1%) (p<0.05). Among 74 Salmonella isolates recovered, 27 serovars and 55 PFGE patterns were identified; all were pan-susceptible to 17 antimicrobials tested. E. coli isolates (n=131) demonstrated similar susceptibility to these antimicrobials except for tetracycline (15.3% resistance), sulfamethoxazole (7.6%), streptomycin (4.6%), ampicillin (3.8%), and nalidixic acid (1.5%). Enterococcus isolates (n=362) were also resistant to five of 17 antimicrobials tested, ranging from 1.1% to penicillin to 14.6% to tetracycline. Resistance rates were generally higher among isolates recovered from animal byproducts. Taken together, our findings suggest that diverse populations of Salmonella, E. coli, and Enterococcus are commonly present in animal feed ingredients, but antimicrobial resistance is not common. Future large-scale studies to monitor these pathogenic and indicator organisms in feed commodities is warranted.

Collaboration


Dive into the David D. Wagner's collaboration.

Top Co-Authors

Avatar

Patrick F. McDermott

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

David G. White

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Shaohua Zhao

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Linda L. English

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Shabbir Simjee

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chitrita DebRoy

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Sharon Friedman

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Sherry Ayers

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge