Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick F. McDermott is active.

Publication


Featured researches published by Patrick F. McDermott.


Applied and Environmental Microbiology | 2004

Characterization of Multiple-Antimicrobial-Resistant Salmonella Serovars Isolated from Retail Meats

Sheng Chen; Shaohua Zhao; David G. White; Carl M. Schroeder; Ran Lu; Hanchun Yang; Patrick F. McDermott; Sherry Ayers; Jianghong Meng

ABSTRACT A total of 133 Salmonella isolates recovered from retail meats purchased in the United States and the Peoples Republic of China were assayed for antimicrobial susceptibility, the presence of integrons and antimicrobial resistance genes, and horizontal transfer of characterized antimicrobial resistance determinants via conjugation. Seventy-three (82%) of these Salmonella isolates were resistant to at least one antimicrobial agent. Resistance to the following antibiotics was common among the United States isolates: tetracycline (68% of the isolates were resistant), streptomycin (61%), sulfamethoxazole (42%), and ampicillin (29%). Eight Salmonella isolates (6%) were resistant to ceftriaxone. Fourteen isolates (11%) from the Peoples Republic of China were resistant to nalidixic acid and displayed decreased susceptibility to ciprofloxacin. A total of 19 different antimicrobial resistance genes were identified in 30 multidrug-resistant Salmonella isolates. The blaCMY-2 gene, encoding a class A AmpC β-lactamase, was detected in all 10 Salmonella isolates resistant to extended-spectrum β-lactams. Resistance to ampicillin was most often associated with a TEM-1 family β-lactamase gene. Six aminoglycoside resistance genes, aadA1, aadA2, aacC2, Kn, aph(3)-IIa, and aac(3)-IVa, were commonly present in the Salmonella isolates. Sixteen (54%) of 30 Salmonella isolates tested had integrons ranging in size from 0.75 to 2.7 kb. Conjugation studies demonstrated that there was plasmid-mediated transfer of genes encoding CMY-2 and TEM-1-like β-lactamases. These data indicate that Salmonella isolates recovered from retail raw meats are commonly resistant to multiple antimicrobials, including those used for treating salmonellosis, such as ceftriaxone. Genes conferring antimicrobial resistance in Salmonella are often carried on integrons and plasmids and could be transmitted through conjugation. These mobile DNA elements have likely played an important role in transmission and dissemination of antimicrobial resistance determinants among Salmonella strains.


PLOS ONE | 2007

Multiple antimicrobial resistance in plague: An emerging public health risk

Timothy J. Welch; W. Florian Fricke; Patrick F. McDermott; David G. White; Marie Laure Rosso; David A. Rasko; Mark K. Mammel; Mark Eppinger; M. J. Rosovitz; David M. Wagner; Lila Rahalison; J. Eugene LeClerc; Jeffrey M. Hinshaw; Luther E. Lindler; Thomas A. Cebula; Elisabeth Carniel; Jacques Ravel

Antimicrobial resistance in Yersinia pestis is rare, yet constitutes a significant international public health and biodefense threat. In 1995, the first multidrug resistant (MDR) isolate of Y. pestis (strain IP275) was identified, and was shown to contain a self-transmissible plasmid (pIP1202) that conferred resistance to many of the antimicrobials recommended for plague treatment and prophylaxis. Comparative analysis of the DNA sequence of Y. pestis plasmid pIP1202 revealed a near identical IncA/C plasmid backbone that is shared by MDR plasmids isolated from Salmonella enterica serotype Newport SL254 and the fish pathogen Yersinia ruckeri YR71. The high degree of sequence identity and gene synteny between the plasmid backbones suggests recent acquisition of these plasmids from a common ancestor. In addition, the Y. pestis pIP1202-like plasmid backbone was detected in numerous MDR enterobacterial pathogens isolated from retail meat samples collected between 2002 and 2005 in the United States. Plasmid-positive strains were isolated from beef, chicken, turkey and pork, and were found in samples from the following states: California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York and Oregon. Our studies reveal that this common plasmid backbone is broadly disseminated among MDR zoonotic pathogens associated with agriculture. This reservoir of mobile resistance determinants has the potential to disseminate to Y. pestis and other human and zoonotic bacterial pathogens and therefore represents a significant public health concern.


Microbes and Infection | 2002

Antimicrobial resistance of foodborne pathogens.

David G. White; Shaohua Zhao; Shabbir Simjee; David D. Wagner; Patrick F. McDermott

Emergence of bacterial antimicrobial resistance has become a serious problem worldwide. While much of the resistance observed in human medicine is attributed to inappropriate use in humans, there is increasing evidence that antimicrobial use in animals selects for resistant foodborne pathogens that may be transmitted to humans as food contaminants.


Applied and Environmental Microbiology | 2002

Antimicrobial Resistance of Escherichia coli O157 Isolated from Humans, Cattle, Swine, and Food

Carl M. Schroeder; Cuiwei Zhao; Chitrita DebRoy; Jocelyn Torcolini; Shaohua Zhao; David G. White; David D. Wagner; Patrick F. McDermott; Robert D. Walker; Jianghong Meng

ABSTRACT A total of 361 Escherichia coli O157 isolates, recovered from humans, cattle, swine, and food during the years 1985 to 2000, were examined to better understand the prevalence of antimicrobial resistance among these organisms. Based on broth microdilution results, 220 (61%) of the isolates were susceptible to all 13 antimicrobials tested. Ninety-nine (27%) of the isolates, however, were resistant to tetracycline, 93 (26%) were resistant to sulfamethoxazole, 61 (17%) were resistant to cephalothin, and 48 (13%) were resistant to ampicillin. Highest frequencies of resistance occurred among swine isolates (n = 70), where 52 (74%) were resistant to sulfamethoxazole, 50 (71%) were resistant to tetracycline, 38 (54%) were resistant to cephalothin, and 17 (24%) were resistant to ampicillin. Based on the presence of Shiga toxin genes as determined by PCR, 210 (58%) of the isolates were identified as Shiga toxin-producing E. coli (STEC). Among these, resistance was generally low, yet 21 (10%) were resistant to sulfamethoxazole and 19 (9%) were resistant to tetracycline. Based on latex agglutination, 189 (52%) of the isolates were identified as E. coli O157:H7, among which 19 (10%) were resistant to sulfamethoxazole and 16 (8%) were resistant to tetracycline. The data suggest that selection pressure imposed by the use of tetracycline derivatives, sulfa drugs, cephalosporins, and penicillins, whether therapeutically in human and veterinary medicine or as prophylaxis in the animal production environment, is a key driving force in the selection of antimicrobial resistance in STEC and non-STEC O157.


Emerging Infectious Diseases | 2012

Antimicrobial Drug Resistance in Escherichia coli from Humans and Food Animals, United States, 1950-2002

Daniel A. Tadesse; Shaohua Zhao; Emily Tong; Sherry Ayers; Aparna Singh; Mary J. Bartholomew; Patrick F. McDermott

Determining drug resistance trends will optimize treatment and public health responses.


Journal of Clinical Microbiology | 2003

Characterization of Salmonella enterica Serotype Newport Isolated from Humans and Food Animals

Shaohua Zhao; S. Qaiyumi; S. Friedman; R. Singh; S. L. Foley; David G. White; Patrick F. McDermott; T. Donkar; C. Bolin; S. Munro; Ellen Jo Baron; Robert D. Walker

ABSTRACT Salmonella enterica serotype Newport isolates resistant to at least nine antimicrobials (including extended-spectrum cephalosporins), known as serotype Newport MDR-AmpC isolates, have been rapidly emerging as pathogens in both animals and humans throughout the United States. Resistance to extended-spectrum cephalosporins is associated with clinical failures, including death, in patients with systemic infections. In this study, 87 Salmonella serotype Newport strains were characterized by pulsed-field gel electrophoresis (PFGE) and antimicrobial susceptibility testing and examined for the presence of class 1 integrons and blaCMY genes. Thirty-five PFGE patterns were observed with XbaI, and three of these patterns were indistinguishable among isolates from humans and animals. Fifty-three (60%) Salmonella serotype Newport isolates were identified as serotype Newport MDR-AmpC, including 16 (53%) of 30 human isolates, 27 (93%) of 29 cattle isolates, 7 (70%) of 10 swine isolates, and 3 (30%) of 10 chicken isolates. However, 28 (32%) Salmonella serotype Newport isolates were susceptible to all 16 antimicrobials tested. The blaCMY gene was present in all serotype Newport MDR-AmpC isolates. Furthermore, the plasmid-mediated blaCMY gene was transferable via conjugation to an Escherichia coli strain. The transconjugant showed the MDR-AmpC resistance profile. Thirty-five (40%) of the isolates possessed class 1 integrons. Sequence analyses of the integrons showed that they contained aadA, which confers resistance to streptomycin, or aadA and dhfr, which confer resistance to trimethoprim-sulfamethoxazole. One integron from a swine isolate contained the sat-1 gene, which encodes resistance to streptothricin, an antimicrobial agent that has never been approved for use in the United States. In conclusion, Salmonella serotype Newport MDR-AmpC was commonly identified among Salmonella serotype Newport isolates recovered from humans and food animals. These findings support the possibility of transmission of this organism to humans through the food chain.


The Journal of Infectious Diseases | 2002

Ciprofloxacin Resistance in Campylobacter jejuni Evolves Rapidly in Chickens Treated with Fluoroquinolones

Patrick F. McDermott; Sonya M. Bodeis; Linda L. English; David G. White; Robert D. Walker; Shaohua Zhao; Shabbir Simjee; David D. Wagner

Fluoroquinolones are commonly used to treat gastroenteritis caused by Campylobacter species. Domestically acquired fluoroquinolone-resistant Campylobacter infection has been documented recently in the United States. It has been proposed that the increase in resistance is due, in part, to the use of fluoroquinolones in poultry. In separate experiments, the effects of sarafloxacin and enrofloxacin treatment of Campylobacter jejuni-infected chickens on the development of ciprofloxacin resistance were measured. Fecal samples were collected before and after treatment and were cultured for C. jejuni. When enrofloxacin or sarafloxacin was used at US Food and Drug Administration-approved doses in broiler chickens, resistance developed rapidly and persisted in C. jejuni. MICs of ciprofloxacin increased from a base of 0.25 microg/mL to 32 microg/mL within the 5-day treatment time frame. These results show that the use of these drugs in chickens rapidly selects for resistant Campylobacter organisms and may result in less effective fluoroquinolone therapy for cases of human campylobacteriosis acquired from exposure to contaminated chicken.


Journal of Clinical Microbiology | 2004

Characterization of multiple-antimicrobial-resistant Escherichia coli isolates from diseased chickens and swine in China

Hanchun Yang; Sheng Chen; David G. White; Shaohua Zhao; Patrick F. McDermott; Robert D. Walker; Jianghong Meng

ABSTRACT Escherichia coli isolates from diseased piglets (n = 89) and chickens (n = 71) in China were characterized for O serogroups, virulence genes, antimicrobial susceptibility, class 1 integrons, and mechanisms of fluoroquinolone resistance. O78 was the most common serogroup identified (63%) among the chicken E. coli isolates. Most isolates were PCR positive for the increased serum survival gene (iss; 97%) and the temperature-sensitive hemagglutinin gene (tsh; 93%). The O serogroups of swine E. coli were not those typically associated with pathogenic strains, nor did they posses common characteristic virulence factors. Twenty-three serogroups were identified among the swine isolates; however, 38% were O nontypeable. Overall, isolates displayed resistance to nalidixic acid (100%), tetracycline (98%), sulfamethoxazole (84%), ampicillin (79%), streptomycin (77%), and trimethoprim-sulfamethoxazole (76%). Among the fluoroquinolones, resistance ranged between 64% to levofloxacin, 79% to ciprofloxacin, and 95% to difloxacin. DNA sequencing of gyrA, gyrB, parC, and parE quinolone resistance-determining regions of 39 nalidixic acid-resistant E. coli isolates revealed that a single gyrA mutation was found in all of the isolates; mutations in parC together with double gyrA mutations conferred high-level resistance to fluoroquinolones (ciprofloxacin MIC, ≥8 μg/ml). Class 1 integrons were identified in 17 (19%) isolates from swine and 42 (47%) from chickens. The majority of integrons possessed genes conferring resistance to streptomycin and trimethoprim. These findings suggest that multiple-antimicrobial-resistant E. coli isolates, including fluoroquinolone-resistant variants, are commonly present among diseased swine and chickens in China, and they also suggest the need for the introduction of surveillance programs in China to monitor antimicrobial resistance in pathogenic bacteria that can be potentially transmitted to humans from food animals.


Antimicrobial Agents and Chemotherapy | 2001

Identification and Expression of Cephamycinase blaCMY Genes in Escherichia coli and Salmonella Isolates from Food Animals and Ground Meat

Shaohua Zhao; David G. White; Patrick F. McDermott; Sharon Friedman; Linda English; Sherry Ayers; Jianghong Meng; John J. Maurer; Robert E. Holland; Robert D. Walker

ABSTRACT Twenty-one Salmonella and 54 Escherichia coli isolates, recovered from food animals and retail ground meats, that exhibited decreased susceptibilities to ceftiofur and ceftriaxone were shown to possess a blaCMYgene. The blaCMY-4 gene was identified in an E. coli isolate recovered from retail chicken and was further shown to be responsible for resistance to cephalothin, ampicillin, and amoxicillin-clavulanic acid and elevated MICs of ceftriaxone, cefoxitin, and ceftiofur.


Applied and Environmental Microbiology | 2006

Effect of conventional and organic production practices on the prevalence and antimicrobial resistance of Campylobacter spp. in poultry.

Taradon Luangtongkum; Teresa Y. Morishita; Aaron J. Ison; Shouxiong Huang; Patrick F. McDermott; Qijing Zhang

ABSTRACT Intestinal tracts of broilers and turkeys from 10 conventional broiler farms and 10 conventional turkey farms, where antimicrobials were routinely used, and from 5 organic broiler farms and 5 organic turkey farms, where antimicrobials had never been used, were collected and cultured for Campylobacter species. A total of 694 Campylobacter isolates from the conventional and organic poultry operations were tested for antimicrobial resistance to nine antimicrobial agents by the agar dilution method. Although Campylobacter species were highly prevalent in both the conventional and organic poultry operations, the antimicrobial resistance rates were significantly different between the organic operations and the conventional operations. Less than 2% of Campylobacter strains isolated from organically raised poultry were resistant to fluoroquinolones, while 46% and 67% of Campylobacter isolates from conventionally raised broilers and conventionally raised turkeys, respectively, were resistant to these antimicrobials. In addition, a high frequency of resistance to erythromycin (80%), clindamycin (64%), kanamycin (76%), and ampicillin (31%) was observed among Campylobacter isolates from conventionally raised turkeys. None of the Campylobacter isolates obtained in this study was resistant to gentamicin, while a large number of the isolates from both conventional and organic poultry operations were resistant to tetracycline. Multidrug resistance was observed mainly among Campylobacter strains isolated from the conventional turkey operation (81%). Findings from this study clearly indicate the influence of conventional and organic poultry production practices on antimicrobial resistance of Campylobacter on poultry farms.

Collaboration


Dive into the Patrick F. McDermott's collaboration.

Top Co-Authors

Avatar

Shaohua Zhao

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

David G. White

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sherry Ayers

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David D. Wagner

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Sharon Friedman

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Jean M. Whichard

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Maria Hoffmann

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Jason P. Folster

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge