David De Sancho
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David De Sancho.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Joseph M. Rogers; Vladimiras Oleinikovas; Sarah L. Shammas; Chi T. Wong; David De Sancho; Christopher M. Baker; Jane Clarke
Significance Specific protein–protein interactions are abundant in, and essential for, cellular life. In contrast to the well-studied docking of two already folded proteins, it has been recently established that many proteins are disordered and unfolded in the absence of their partner protein, but appear folded once bound. Must these initially disordered proteins transiently fold in isolation before binding their partners? We examine a small disordered protein and find that interactions with its (already structured) partner protein are what cause the relatively unstructured protein to fold. Thus, the requirement for one protein to fold is not an obstacle for reliable, fast association between two proteins. This result offers some explanation for the abundance of similar protein–protein interactions throughout biology. Protein–protein interactions are at the heart of regulatory and signaling processes in the cell. In many interactions, one or both proteins are disordered before association. However, this disorder in the unbound state does not prevent many of these proteins folding to a well-defined, ordered structure in the bound state. Here we examine a typical system, where a small disordered protein (PUMA, p53 upregulated modulator of apoptosis) folds to an α-helix when bound to a groove on the surface of a folded protein (MCL-1, induced myeloid leukemia cell differentiation protein). We follow the association of these proteins using rapid-mixing stopped flow, and examine how the kinetic behavior is perturbed by denaturant and carefully chosen mutations. We demonstrate the utility of methods developed for the study of monomeric protein folding, including β-Tanford values, Leffler α, Φ-value analysis, and coarse-grained simulations, and propose a self-consistent mechanism for binding. Folding of the disordered protein before binding does not appear to be required and few, if any, specific interactions are required to commit to association. The majority of PUMA folding occurs after the transition state, in the presence of MCL-1. We also examine the role of the side chains of folded MCL-1 that make up the binding groove and find that many favor equilibrium binding but, surprisingly, inhibit the association process.
Nature Chemistry | 2016
Adam Kubas; Christophe Orain; David De Sancho; Laure Saujet; Matteo Sensi; Charles Gauquelin; Isabelle Meynial-Salles; Philippe Soucaille; Hervé Bottin; Carole Baffert; Vincent Fourmond; Robert B. Best; Jochen Blumberger; Christophe Léger
FeFe hydrogenases are the most efficient H2-producing enzymes. However, inactivation by O2 remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O2 diffusion within the enzyme and its reactions at the active site. We propose that the partial reversibility of the reaction with O2 results from the four-electron reduction of O2 to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of a highly reactive OH radical and hydroxylated cysteine. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species during prolonged O2 exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage.
Journal of the American Chemical Society | 2015
Wenwei Zheng; David De Sancho; Travis Hoppe; Robert B. Best
An outstanding challenge in protein folding is understanding the origin of “internal friction” in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein.
Angewandte Chemie | 2014
Adam Kubas; David De Sancho; Robert B. Best; Jochen Blumberger
[FeFe]-hydrogenases are the best natural hydrogen-producing enzymes but their biotechnological exploitation is hampered by their extreme oxygen sensitivity. The free energy profile for the chemical attachment of O2 to the enzyme active site was investigated by using a range-separated density functional re-parametrized to reproduce high-level ab initio data. An activation free-energy barrier of 13 kcal mol−1 was obtained for chemical bond formation between the di-iron active site and O2, a value in good agreement with experimental inactivation rates. The oxygen binding can be viewed as an inner-sphere electron-transfer process that is strongly influenced by Coulombic interactions with the proximal cubane cluster and the protein environment. The implications of these results for future mutation studies with the aim of increasing the oxygen tolerance of this enzyme are discussed.
Journal of Molecular Biology | 2015
Katherine R. Kemplen; David De Sancho; Jane Clarke
What governs the balance between connectivity and topology in regulating the mechanism of protein folding? We use circular permutation to vary the order of the helices in the all-α Greek key protein FADD (Fas-associated death domain) to investigate this question. Unlike all-β Greek key proteins, where changes in the order of secondary structure cause a shift in the folding nucleus, the position of the nucleus in FADD is unchanged, even when permutation reduces the complexity significantly. We suggest that this is because local helical contacts are so dominant that permutation has little effect on the entropic cost of forming the folding nucleus whereas, in all-β Greek key proteins, all interactions in the nucleus are long range. Thus, the type of secondary structure modulates the sensitivity of proteins to changes in connectivity.
Molecular BioSystems | 2012
David De Sancho; Robert B. Best
Physical Chemistry Chemical Physics | 2011
David De Sancho; Victor Muñoz
Biophysical Journal | 2012
Robert B. Best; David De Sancho; Jeetain Mittal
Journal of Chemical Physics | 2016
Anshul Sirur; David De Sancho; Robert B. Best
Journal of Physical Chemistry Letters | 2016
Wenwei Zheng; David De Sancho; Robert B. Best