Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Dominguez-Sola is active.

Publication


Featured researches published by David Dominguez-Sola.


Nature | 2011

Inactivating mutations of acetyltransferase genes in B-cell lymphoma.

Laura Pasqualucci; David Dominguez-Sola; Annalisa Chiarenza; Giulia Fabbri; Adina Grunn; Vladimir Trifonov; Lawryn H. Kasper; Stephanie Lerach; Hongyan Tang; Jing Ma; Davide Rossi; Amy Chadburn; Vundavalli V. Murty; Charles G. Mullighan; Gianluca Gaidano; Raul Rabadan; Paul K. Brindle; Riccardo Dalla-Favera

B-cell non-Hodgkin’s lymphoma comprises biologically and clinically distinct diseases the pathogenesis of which is associated with genetic lesions affecting oncogenes and tumour-suppressor genes. We report here that the two most common types—follicular lymphoma and diffuse large B-cell lymphoma—harbour frequent structural alterations inactivating CREBBP and, more rarely, EP300, two highly related histone and non-histone acetyltransferases (HATs) that act as transcriptional co-activators in multiple signalling pathways. Overall, about 39% of diffuse large B-cell lymphoma and 41% of follicular lymphoma cases display genomic deletions and/or somatic mutations that remove or inactivate the HAT coding domain of these two genes. These lesions usually affect one allele, suggesting that reduction in HAT dosage is important for lymphomagenesis. We demonstrate specific defects in acetylation-mediated inactivation of the BCL6 oncoprotein and activation of the p53 tumour suppressor. These results identify CREBBP/EP300 mutations as a major pathogenetic mechanism shared by common forms of B-cell non-Hodgkin’s lymphoma, with direct implications for the use of drugs targeting acetylation/deacetylation mechanisms.


Nature | 2007

Non-transcriptional control of DNA replication by c-Myc

David Dominguez-Sola; Carol Y. Ying; Carla Grandori; Luca Ruggiero; Brenden Chen; Muyang Li; Denise A. Galloway; Wei Gu; Jean Gautier; Riccardo Dalla-Favera

The c-Myc proto-oncogene encodes a transcription factor that is essential for cell growth and proliferation and is broadly implicated in tumorigenesis. However, the biological functions required by c-Myc to induce oncogenesis remain elusive. Here we show that c-Myc has a direct role in the control of DNA replication. c-Myc interacts with the pre-replicative complex and localizes to early sites of DNA synthesis. Depletion of c-Myc from mammalian (human and mouse) cells as well as from Xenopus cell-free extracts, which are devoid of RNA transcription, demonstrates a non-transcriptional role for c-Myc in the initiation of DNA replication. Overexpression of c-Myc causes increased replication origin activity with subsequent DNA damage and checkpoint activation. These findings identify a critical function of c-Myc in DNA replication and suggest a novel mechanism for its normal and oncogenic functions.


Cancer Cell | 2011

Combined Genetic Inactivation of β2-Microglobulin and CD58 Reveals Frequent Escape from Immune Recognition in Diffuse Large B Cell Lymphoma

Madhavi Challa-Malladi; Yen K. Lieu; Olivia Califano; Antony B. Holmes; Govind Bhagat; Vundavalli V. Murty; David Dominguez-Sola; Laura Pasqualucci; Riccardo Dalla-Favera

We report that diffuse large B cell lymphoma (DLBCL) commonly fails to express cell-surface molecules necessary for the recognition of tumor cells by immune-effector cells. In 29% of cases, mutations and deletions inactivate the β2-Microglobulin gene, thus preventing the cell-surface expression of the HLA class-I (HLA-I) complex that is necessary for recognition by CD8(+) cytotoxic Txa0cells. In 21% of cases, analogous lesionsxa0involve the CD58 gene, which encodes a molecule involved in T and natural killer cell-mediated responses. In addition to gene inactivation, alternative mechanisms lead to aberrant expression of HLA-I and CD58 in >60% of DLBCL. These two events are significantly associated in this disease, suggesting that they are coselected during lymphomagenesis for their combined role in escape from immune-surveillance.


Nature Immunology | 2012

The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry.

David Dominguez-Sola; Gabriel D. Victora; Carol Y. Ying; Ryan T Phan; Masumichi Saito; Michel C. Nussenzweig; Riccardo Dalla-Favera

After antigenic challenge, B cells enter the dark zone (DZ) of germinal centers (GCs) to proliferate and hypermutate their immunoglobulin genes. Mutants with greater affinity for the antigen are positively selected in the light zone (LZ) to either differentiate into plasma and memory cells or reenter the DZ. The molecular circuits that govern positive selection in the GC are not known. We show here that the GC reaction required biphasic regulation of expression of the cell-cycle regulator c-Myc that involved its transient induction during early GC commitment, its repression by Bcl-6 in DZ B cells and its reinduction in B cells selected for reentry into the DZ. Inhibition of c-Myc in vivo led to GC collapse, which indicated an essential role for c-Myc in GCs. Our results have implications for the mechanism of GC selection and the role of c-Myc in lymphomagenesis.Upon antigenic challenge, B cells enter the dark-zone (DZ) of germinal-centers (GC) to proliferate and hypermutate their immunoglobulin genes. Mutants with increased affinity are positively selected in the light-zone (LZ) to either differentiate into plasma and memory cells, or re-enter the DZ. The molecular circuits governing GC positive selection are not known. We show that the GC reaction requires the biphasic regulation of c-MYC expression, involving its transient induction during early GC commitment, its repression by BCL6 in DZ B cells, and its re-induction in B cells selected for DZ re-entry. Inhibition of MYC in vivo leads to GC collapse, indicating an essential role in GCs. These results have implications for the mechanism of GC selection and the role of MYC in lymphomagenesis.


Blood | 2012

Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas.

Gabriel D. Victora; David Dominguez-Sola; Antony B. Holmes; Stephanie Deroubaix; Riccardo Dalla-Favera; Michel C. Nussenzweig

Germinal centers (GCs) are sites of B-cell clonal expansion, hypermutation, and selection. GCs are polarized into dark (DZ) and light zones (LZ), a distinction that is of key importance to GC selection. However, the difference between the B cells in each of these zones in humans remains unclear. We show that, as in mice, CXCR4 and CD83 can be used to distinguish human LZ and DZ cells. Using these markers, we show that LZ and DZ cells in mice and humans differ only in the expression of characteristic activation and proliferation programs, suggesting that these populations represent alternating states of a single-cell type rather than distinct differentiation stages. In addition, LZ/DZ transcriptional profiling shows that, with the exception of molecular Burkitt lymphomas, nearly all human B-cell malignancies closely resemble LZ cells, which has important implications for our understanding of the molecular programs of lymphomagenesis.


Blood | 2011

Alteration of BIRC3 and multiple other NF-κB pathway genes in splenic marginal zone lymphoma

Davide Rossi; Silvia Deaglio; David Dominguez-Sola; Silvia Rasi; Tiziana Vaisitti; Claudio Agostinelli; Valeria Spina; Alessio Bruscaggin; Sara Monti; Michaela Cerri; Stefania Cresta; Marco Fangazio; Luca Arcaini; Marco Lucioni; Roberto Marasca; Catherine Thieblemont; Daniela Capello; Fabio Facchetti; Ivo Kwee; Stefano Pileri; Robin Foà; Francesco Bertoni; Riccardo Dalla-Favera; Laura Pasqualucci; Gianluca Gaidano

Splenic marginal zone lymphoma (SMZL) is one of the few B-cell lymphoma types that remain orphan of molecular lesions in cancer-related genes. Detection of active NF-κB signaling in 14 (58%) of 24 SMZLs prompted the investigation of NF-κB molecular alterations in 101 SMZLs. Mutations and copy number abnormalities of NF-κB genes occurred in 36 (36%) of 101 SMZLs and targeted both canonical (TNFAIP3 and IKBKB) and noncanonical (BIRC3, TRAF3, MAP3K14) NF-κB pathways. Most alterations were mutually exclusive, documenting the existence of multiple independent mechanisms affecting NF-κB in SMZL. BIRC3 inactivation in SMZL recurred because of somatic mutations that disrupted the same RING domain that in extranodal marginal zone lymphoma is removed by the t(11;18) translocation, which points to BIRC3 disruption as a common mechanism across marginal zone B-cell lymphomagenesis. Genetic lesions of NF-κB provide a molecular basis for the pathogenesis of more than 30% of SMZLs and offer a suitable target for NF-κB therapeutic approaches in this lymphoma.


Nature Medicine | 2015

Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis

Jiyuan Zhang; David Dominguez-Sola; Shafinaz Hussein; Ji-Eun Lee; Antony B. Holmes; Mukesh Bansal; Sofija Vlasevska; Tongwei Mo; Hongyan Tang; Katia Basso; Kai Ge; Riccardo Dalla-Favera; Laura Pasqualucci

Mutations in the gene encoding the KMT2D (or MLL2) methyltransferase are highly recurrent and occur early during tumorigenesis in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL). However, the functional consequences of these mutations and their role in lymphomagenesis are unknown. Here we show that FL- and DLBCL-associated KMT2D mutations impair KMT2D enzymatic activity, leading to diminished global H3K4 methylation in germinal-center (GC) B cells and DLBCL cells. Conditional deletion of Kmt2d early during B cell development, but not after initiation of the GC reaction, results in an increase in GC B cells and enhances B cell proliferation in mice. Moreover, genetic ablation of Kmt2d in mice overexpressing Bcl2 increases the incidence of GC-derived lymphomas resembling human tumors. These findings suggest that KMT2D acts as a tumor suppressor gene whose early loss facilitates lymphomagenesis by remodeling the epigenetic landscape of the cancer precursor cells. Eradication of KMT2D-deficient cells may thus represent a rational therapeutic approach for targeting early tumorigenic events.


Nature Immunology | 2013

MEF2B mutations lead to deregulated expression of the oncogene BCL6 in diffuse large B cell lymphoma.

Carol Y. Ying; David Dominguez-Sola; Melissa Fabi; Ivo C. Lorenz; Shafinaz Hussein; Mukesh Bansal; Laura Pasqualucci; Katia Basso; Riccardo Dalla-Favera

MEF2B encodes a transcriptional activator and is mutated in ∼11% of diffuse large B cell lymphomas (DLBCLs) and ∼12% of follicular lymphomas (FLs). Here we found that MEF2B directly activated the transcription of the proto-oncogene BCL6 in normal germinal-center (GC) B cells and was required for DLBCL proliferation. Mutation of MEF2B resulted in enhanced transcriptional activity of MEF2B either through disruption of its interaction with the corepressor CABIN1 or by rendering it insensitive to inhibitory signaling events mediated by phosphorylation and sumoylation. Consequently, the transcriptional activity of Bcl-6 was deregulated in DLBCLs with MEF2B mutations. Thus, somatic mutations of MEF2B may contribute to lymphomagenesis by deregulating BCL6 expression, and MEF2B may represent an alternative target for blocking Bcl-6 activity in DLBCLs.


Cell Reports | 2013

Cdc45 Is a Critical Effector of Myc-Dependent DNA Replication Stress

Seetha V. Srinivasan; David Dominguez-Sola; Lily C. Wang; Olivier Hyrien; Jean Gautier

c-Myc oncogenic activity is thought to be mediated in part by its ability to generate DNA replication stress and subsequent genomic instability when deregulated. Previous studies have demonstrated a nontranscriptional role for c-Myc in regulating DNA replication. Here, we analyze the mechanisms by which c-Myc deregulation generates DNA replication stress. We find that overexpression of c-Myc alters the spatiotemporal program of replication initiation by increasing the density of early-replicating origins. We further show that c-Myc deregulation results inxa0elevated replication-fork stalling or collapse and subsequent DNA damage. Notably, these phenotypes are independent of RNA transcription. Finally, we demonstrate that overexpression of Cdc45 recapitulates all c-Myc-induced replication and damage phenotypes and that Cdc45 and GINS function downstream of Myc.


Immunity | 2015

The FOXO1 Transcription Factor Instructs the Germinal Center Dark Zone Program

David Dominguez-Sola; Jennifer Kung; Antony B. Holmes; Victoria A. Wells; Tongwei Mo; Katia Basso; Riccardo Dalla-Favera

The pathways regulating formation of the germinal center (GC) dark zone (DZ) and light zone (LZ) are unknown. In this study we show that FOXO1 transcription factor expression was restricted to the GC DZ and was required for DZ formation, since its absence in mice led to the loss of DZ gene programs and the formation of LZ-only GCs. FOXO1-negative GC B cells displayed normal somatic hypermutation but defective affinity maturation and class switch recombination. The function of FOXO1 in sustaining the DZ program involved the trans-activation of the chemokine receptor CXCR4, and cooperation with the BCL6 transcription factor in the trans-repression of genes involved in immune activation, DNA repair, and plasma cell differentiation. These results also have implications for the role of FOXO1 in lymphomagenesis because they suggest that constitutive FOXO1 activity might be required for the oncogenic activity of deregulated BCL6 expression.

Collaboration


Dive into the David Dominguez-Sola's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriel D. Victora

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shafinaz Hussein

Staten Island University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge