Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. Cane is active.

Publication


Featured researches published by David E. Cane.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism

Mamoru Komatsu; Takuma Uchiyama; Satoshi Omura; David E. Cane; Haruo Ikeda

To construct a versatile model host for heterologous expression of genes encoding secondary metabolite biosynthesis, the genome of the industrial microorganism Streptomyces avermitilis was systematically deleted to remove nonessential genes. A region of more than 1.4 Mb was deleted stepwise from the 9.02-Mb S. avermitilis linear chromosome to generate a series of defined deletion mutants, corresponding to 83.12–81.46% of the wild-type chromosome, that did not produce any of the major endogenous secondary metabolites found in the parent strain. The suitability of the mutants as hosts for efficient production of foreign metabolites was shown by heterologous expression of three different exogenous biosynthetic gene clusters encoding the biosynthesis of streptomycin (from S. griseus Institute for Fermentation, Osaka [IFO] 13350), cephamycin C (from S. clavuligerus American type culture collection (ATCC) 27064), and pladienolide (from S. platensis Mer-11107). Both streptomycin and cephamycin C were efficiently produced by individual transformants at levels higher than those of the native-producing species. Although pladienolide was not produced by a deletion mutant transformed with the corresponding intact biosynthetic gene cluster, production of the macrolide was enabled by introduction of an extra copy of the regulatory gene pldR expressed under control of an alternative promoter. Another mutant optimized for terpenoid production efficiently produced the plant terpenoid intermediate, amorpha-4,11-diene, by introduction of a synthetic gene optimized for Streptomyces codon usage. These findings highlight the strength and flexibility of engineered S. avermitilis as a model host for heterologous gene expression, resulting in the production of exogenous natural and unnatural metabolites.


Chemistry & Biology | 1999

The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases

David E. Cane; Christopher T. Walsh

Polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) catalyze chain elongation from simple building blocks to create a diverse array of natural products. PKS and NRPS proteins share striking architectural and organizational similarities that can be exploited to generate entirely new natural products.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade

Michael J. Rynkiewicz; David E. Cane; David W. Christianson

The x-ray crystal structure of recombinant trichodiene synthase from Fusarium sporotrichioides has been determined to 2.5-Å resolution, both unliganded and complexed with inorganic pyrophosphate. This reaction product coordinates to three Mg2+ ions near the mouth of the active site cleft. A comparison of the liganded and unliganded structures reveals a ligand-induced conformational change that closes the mouth of the active site cleft. Binding of the substrate farnesyl diphosphate similarly may trigger this conformational change, which would facilitate catalysis by protecting reactive carbocationic intermediates in the cyclization cascade. Trichodiene synthase also shares significant structural similarity with other sesquiterpene synthases despite a lack of significant sequence identity. This similarity indicates divergence from a common ancestor early in the evolution of terpene biosynthesis.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Crystal structure of the macrocycle-forming thioesterase domain of the erythromycin polyketide synthase: Versatility from a unique substrate channel

Shiou-Chuan Tsai; Larry J. W. Miercke; Jolanta Krucinski; Rajesh S. Gokhale; Julian C.-H. Chen; Paul G. Foster; David E. Cane; Chaitan Khosla; Robert M. Stroud

As the first structural elucidation of a modular polyketide synthase (PKS) domain, the crystal structure of the macrocycle-forming thioesterase (TE) domain from the 6-deoxyerythronolide B synthase (DEBS) was solved by a combination of multiple isomorphous replacement and multiwavelength anomalous dispersion and refined to an R factor of 24.1% to 2.8-Å resolution. Its overall tertiary architecture belongs to the α/β-hydrolase family, with two unusual features unprecedented in this family: a hydrophobic leucine-rich dimer interface and a substrate channel that passes through the entire protein. The active site triad, comprised of Asp-169, His-259, and Ser-142, is located in the middle of the substrate channel, suggesting the passage of the substrate through the protein. Modeling indicates that the active site can accommodate and orient the 6-deoxyerythronolide B precursor uniquely, while at the same time shielding the active site from external water and catalyzing cyclization by macrolactone formation. The geometry and organization of functional groups explain the observed substrate specificity of this TE and offer strategies for engineering macrocycle biosynthesis. Docking of a homology model of the upstream acyl carrier protein (ACP6) against the TE suggests that the 2-fold axis of the TE dimer may also be the axis of symmetry that determines the arrangement of domains in the entire DEBS. Sequence conservation suggests that all TEs from modular polyketide synthases have a similar fold, dimer 2-fold axis, and substrate channel geometry.


Journal of Biological Chemistry | 2000

Crystal structure determination of aristolochene synthase from the Blue cheese mold, Penicillium roqueforti.

Jonathan M. Caruthers; Ilgu Kang; Michael J. Rynkiewicz; David E. Cane; D.W. Christianson

The 2.5-Å resolution crystal structure of recombinant aristolochene synthase from the blue cheese mold,Penicillium roqueforti, is the first of a fungal terpenoid cyclase. The structure of the enzyme reveals active site features that participate in the cyclization of the universal sesquiterpene cyclase substrate, farnesyl diphosphate, to form the bicyclic hydrocarbon aristolochene. Metal-triggered carbocation formation initiates the cyclization cascade, which proceeds through multiple complex intermediates to yield one exclusive structural and stereochemical isomer of aristolochene. Structural homology of this fungal cyclase with plant and bacterial terpenoid cyclases, despite minimal amino acid sequence identity, suggests divergence from a common, primordial ancestor in the evolution of terpene biosynthesis.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Terpene synthases are widely distributed in bacteria

Yuuki Yamada; Tomohisa Kuzuyama; Mamoru Komatsu; Kazuo Shin-ya; Satoshi Omura; David E. Cane; Haruo Ikeda

Significance Terpenes are generally considered to be plant or fungal metabolites, although a small number of odoriferous terpenes of bacterial origin have been known for many years. Recently, extensive bacterial genome sequencing and bioinformatic analysis of deduced bacterial proteins using a profile based on a hidden Markov model have revealed 262 distinct predicted terpene synthases. Although many of these presumptive terpene synthase genes seem to be silent in their parent microorganisms, controlled expression of these genes in an engineered heterologous Streptomyces host has made it possible to identify the biochemical function of the encoded terpene synthases. Genes encoding such terpene synthases have been shown to be widely distributed in bacteria and represent a fertile source for discovery of new natural products. Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes.


ACS Synthetic Biology | 2013

Engineered Streptomyces avermitilis Host for Heterologous Expression of Biosynthetic Gene Cluster for Secondary Metabolites

Mamoru Komatsu; Kyoko Komatsu; Hanae Koiwai; Yuuki Yamada; Ikuko Kozone; Miho Izumikawa; Junko Hashimoto; Motoki Takagi; Satoshi Omura; Kazuo Shin-ya; David E. Cane; Haruo Ikeda

An industrial microorganism, Streptomyces avermitilis, which is a producer of anthelmintic macrocyclic lactones, avermectins, has been constructed as a versatile model host for heterologous expression of genes encoding secondary metabolite biosynthesis. Twenty of the entire biosynthetic gene clusters for secondary metabolites were successively cloned and introduced into a versatile model host S. avermitilis SUKA17 or 22. Almost all S. avermitilis transformants carrying the entire gene cluster produced metabolites as a result of the expression of biosynthetic gene clusters introduced. A few transformants were unable to produce metabolites, but their production was restored by the expression of biosynthetic genes using an alternative promoter or the expression of a regulatory gene in the gene cluster that controls the expression of biosynthetic genes in the cluster using an alternative promoter. Production of metabolites in some transformants of the versatile host was higher than that of the original producers, and cryptic biosynthetic gene clusters in the original producer were also expressed in a versatile host.


ACS Chemical Biology | 2008

Sesquiterpene Synthase from the Botrydial Biosynthetic Gene Cluster of the Phytopathogen Botrytis cinerea

Cristina Pinedo; Chieh-Mei Wang; Jean-Marc Pradier; Bérengère Dalmais; Mathias Choquer; Pascal Le Pêcheur; Guillaume Morgant; Isidro G. Collado; David E. Cane; Muriel Viaud

The fungus Botrytis cinerea is the causal agent of the economically important gray mold disease that affects more than 200 ornamental and agriculturally important plant species. B. cinerea is a necrotrophic plant pathogen that secretes nonspecific phytotoxins, including the sesquiterpene botrydial and the polyketide botcinic acid. The region surrounding the previously characterized BcBOT1 gene has now been identified as the botrydial biosynthetic gene cluster.Five genes including BcBOT1 and BcBOT2 were shown by quantitative reverse transcription-PCR to be co-regulated through the calcineurin signaling pathway. Inactivation of the BcBOT2 gene, encoding a putative sesquiterpene cyclase, abolished botrydial biosynthesis, which could be restored by in trans complementation.Inactivation of BcBOT2 also resulted in overproduction of botcinic acid that was observed to be strain-dependent. Recombinant BcBOT2 protein converted farnesyl diphosphate to the parent sesquiterpene of the botrydial biosynthetic pathway, the tricyclic alcohol presilphiperfolan-8beta-ol.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Expression and mechanistic analysis of a germacradienol synthase from Streptomyces coelicolor implicated in geosmin biosynthesis

David E. Cane; Rory M. Watt

The PCR has been used to amplify a 2,181-bp ORF from Streptomyces coelicolor A3(2), designated SC9B1.20 (= SCO6073), encoding a protein of 726 amino acids and showing significant sequence similarity at the deduced amino acid level in both the N-terminal and C-terminal halves to the known sesquiterpene synthase pentalenene synthase. The full-length recombinant protein was expressed at high levels in Escherichia coli and shown to catalyze the Mg2+-dependent conversion of farnesyl diphosphate to the sesquiterpene alcohol (4S, 7R)-germacra-1 (10)E, 5E-diene-11-ol. The enzymatic cyclization had a kcat of 6.2 ± 0.5 × 10−3 s−1 and a Km for farnesyl diphosphate of 62 ± 8 nM. Expression of the N-terminal (366 amino acids) domain of the SC9B1.20 protein also gave a fully functional cyclase which converted farnesyl diphosphate to the identical sesquiterpene alcohol with a slightly lower kcat of 3.2 ± 0.4 × 10−3 s−1 and a twofold greater km of 115 ± 14 nM. By contrast, the expressed C-terminal domain of SC9B1.20 had no farnesyl diphosphate cyclase activity. The formation of the germacradienol seems to be the committed step in the formation of geosmin, the characteristic odoriferous constituent of Streptomyces species.


Journal of Biological Chemistry | 2008

Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3(2)

Bin Zhao; Xin Lin; Li Lei; David C. Lamb; Steven L. Kelly; Michael R. Waterman; David E. Cane

Cytochrome P450 170A1 (CYP170A1) is encoded by the sco5223 gene of the Gram-positive, soil-dwelling bacterium Streptomyces coelicolor A3(2) as part of a two-gene cluster with the sco5222 gene. The SCO5222 protein is a sesquiterpene synthase that catalyzes the cyclization of farnesyl diphosphate to the novel tricyclic hydrocarbon, epi-isozizaene (Lin, X., Hopson, R., and Cane, D. E. (2006) J. Am. Chem. Soc. 128, 6022–6023). The presence of CYP170A1 (sco5223) suggested that epiisozizaene might be further oxidized by the transcriptionally coupled P450. We have now established that purified CYP170A1 carries out two sequential allylic oxidations to convert epi-isozizaene to an epimeric mixture of albaflavenols and thence to the sesquiterpene antibiotic albaflavenone. Gas chromatography/mass spectrometry analysis of S. coelicolor culture extracts established the presence of albaflavenone in the wild-type strain, along with its precursors epi-isozizaene and the albaflavenols. Disruption of the CYP170A1 gene abolished biosynthesis of both albaflavenone and the albaflavenols, but not epi-isozizaene. The combined results establish for the first time the presence of albaflavenone in S. coelicolor and clearly demonstrate that the biosynthesis of this antibiotic involves the coupled action of epi-isozizaene synthase and CYP170A1.

Collaboration


Dive into the David E. Cane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge