Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. Featherstone is active.

Publication


Featured researches published by David E. Featherstone.


BMC Biology | 2005

Discs-large (DLG) is clustered by presynaptic innervation and regulates postsynaptic glutamate receptor subunit composition in Drosophila

Kaiyun Chen; David E. Featherstone

BackgroundDrosophila discs-large (DLG) is the sole representative of a large class of mammalian MAGUKs, including human DLG, SAP 97, SAP102, and PSD-95. MAGUKs are thought to be critical for postsynaptic assembly at glutamatergic synapses. However, glutamate receptor cluster formation has never been examined in Drosophila DLG mutants. The fly neuromuscular junction (NMJ) is a genetically-malleable model glutamatergic synapse widely used to address questions regarding the molecular mechanisms of synapse formation and growth. Here, we use immunohistochemistry, confocal microscopy, and electrophysiology to examine whether fly NMJ glutamate receptor clusters form normally in DLG mutants. We also address the question of how DLG itself is localized to the synapse by testing whether presynaptic innervation is required for postsynaptic DLG clustering, and whether DLG localization requires the presence of postsynaptic glutamate receptors.ResultsThere are thought to be two classes of glutamate receptors in the Drosophila NMJ: 1) receptors that contain the subunit GluRIIA, and 2) receptors that contain the subunit GluRIIB. In DLG mutants, antibody staining for the glutamate receptor subunit GluRIIA is normal, but antibody staining for the glutamate receptor subunit GluRIIB is significantly reduced. Electrophysiological analysis shows an overall loss of functional postsynaptic glutamate receptors, along with changes in receptor biophysical properties that are consistent with a selective loss of GluRIIB from the synapse. In uninnervated postsynaptic muscles, neither glutamate receptors nor DLG cluster at synapses. DLG clusters normally in the complete absence of glutamate receptors.ConclusionsOur results suggest that DLG controls glutamate receptor subunit composition by selectively stabilizing GluRIIB-containing receptors at the synapse. We also show that DLG, like glutamate receptors, is localized only after the presynaptic neuron contacts the postsynaptic cell. We hypothesize that glutamate receptors and DLG cluster in response to parallel signals from the presynaptic neuron, after which DLG regulates subunit composition by stabilizing (probably indirectly) receptors that contain the GluRIIB subunit. The mechanism(s) stabilizing GluRIIA-containing receptors remains unknown.


Neuron | 2006

A Single Vesicular Glutamate Transporter Is Sufficient to Fill a Synaptic Vesicle

Richard W. Daniels; Catherine A. Collins; Kaiyun Chen; Maria V. Gelfand; David E. Featherstone; Aaron DiAntonio

Quantal size is the postsynaptic response to the release of a single synaptic vesicle and is determined in part by the amount of transmitter within that vesicle. At glutamatergic synapses, the vesicular glutamate transporter (VGLUT) fills vesicles with glutamate. While elevated VGLUT expression increases quantal size, the minimum number of transporters required to fill a vesicle is unknown. In Drosophila DVGLUT mutants, reduced transporter levels lead to a dose-dependent reduction in the frequency of spontaneous quantal release with no change in quantal size. Quantal frequency is not limited by vesicle number or impaired exocytosis. This suggests that a single functional unit of transporter is both necessary and sufficient to fill a vesicle to completion and that vesicles without DVGLUT are empty. Consistent with the presence of empty vesicles, at dvglut mutant synapses synaptic vesicles are smaller, suggesting that vesicle filling and/or transporter level is an important determinant of vesicle size.


The Journal of Neuroscience | 2005

An Essential Drosophila Glutamate Receptor Subunit That Functions in Both Central Neuropil and Neuromuscular Junction

David E. Featherstone; Emma Rushton; Faith Liebl; Julie Karr; Qi Sheng; Christopher K. Rodesch; Kendal Broadie

A Drosophila forward genetic screen for mutants with defective synaptic development identified bad reception (brec). Homozygous brec mutants are embryonic lethal, paralyzed, and show no detectable synaptic transmission at the glutamatergic neuromuscular junction (NMJ). Genetic mapping, complementation tests, and genomic sequencing show that brec mutations disrupt a previously uncharacterized ionotropic glutamate receptor subunit, named here “GluRIID.” GluRIID is expressed in the postsynaptic domain of the NMJ, as well as widely throughout the synaptic neuropil of the CNS. In the NMJ of null brec mutants, all known glutamate receptor subunits are undetectable by immunocytochemistry, and all functional glutamate receptors are eliminated. Thus, we conclude that GluRIID is essential for the assembly and/or stabilization of glutamate receptors in the NMJ. In null brec mutant embryos, the frequency of periodic excitatory currents in motor neurons is significantly reduced, demonstrating that CNS motor pattern activity is regulated by GluRIID. Although synaptic development and molecular differentiation appear otherwise unperturbed in null mutants, viable hypomorphic brec mutants display dramatically undergrown NMJs by the end of larval development, suggesting that GluRIID-dependent central pattern activity regulates peripheral synaptic growth. These studies reveal GluRIID as a newly identified glutamate receptor subunit that is essential for glutamate receptor assembly/stabilization in the peripheral NMJ and required for properly patterned motor output in the CNS.


Neuron | 2000

Presynaptic Glutamic Acid Decarboxylase Is Required for Induction of the Postsynaptic Receptor Field at a Glutamatergic Synapse

David E. Featherstone; Emma Rushton; M Hilderbrand-Chae; A.M Phillips; F.R Jackson; Kendal Broadie

We have systematically screened EMS-mutagenized Drosophila for embryonic lethal strains with defects in glutamatergic synaptic transmission. Surprisingly, this screen led to the identification of several alleles with missense mutations in highly conserved regions of Dgad1. Analysis of these gad mutants reveals that they are paralyzed owing to defects in glutamatergic transmission at the neuromuscular junction. Further electrophysiological and immunohistochemical examination reveals that these mutants have greatly reduced numbers of postsynaptic glutamate receptors in an otherwise morphologically normal synapse. By overexpressing wild-type Dgad1 in selected neurons, we show that GAD is specifically required in the presynaptic neuron to induce a postsynaptic glutamate receptor field, and that the level of postsynaptic receptors is closely dependent on presynaptic GAD function. These data demonstrate that GAD plays an unexpected role in glutamatergic synaptogenesis.


Nature Neuroscience | 2002

Developmental regulation of glutamate receptor field size by nonvesicular glutamate release.

David E. Featherstone; Emma Rushton; Kendal Broadie

We hypothesized that presynaptic glutamate regulates postsynaptic ionotropic glutamate receptor number during synaptogenesis. To test this idea, we genetically manipulated presynaptic glutamate levels at the glutamatergic Drosophila neuromuscular junction (NMJ), then microscopically and electrophysiologically measured postsynaptic glutamate receptor field size and function. Our data show that presynaptic glutamate is a strong negative regulator of postsynaptic receptor field size and function during development. Glutamate-triggered receptor downregulation was not affected by block of synaptic vesicle fusion, demonstrating that receptors are regulated by nonvesicular glutamate release. Our results reveal an elegant mechanism for receptor field regulation during synaptogenesis and reveal a nonpathological role for nonvesicular glutamate release at the synapse.


The Journal of Neuroscience | 2007

Nonvesicular Release of Glutamate by Glial xCT Transporters Suppresses Glutamate Receptor Clustering In Vivo

Hrvoje Augustin; Yael Grosjean; Kaiyun Chen; Qi Sheng; David E. Featherstone

We hypothesized that cystine/glutamate transporters (xCTs) might be critical regulators of ambient extracellular glutamate levels in the nervous system and that misregulation of this glutamate pool might have important neurophysiological and/or behavioral consequences. To test this idea, we identified and functionally characterized a novel Drosophila xCT gene, which we subsequently named “genderblind” (gb). Genderblind is expressed in a previously overlooked subset of peripheral and central glia. Genetic elimination of gb causes a 50% reduction in extracellular glutamate concentration, demonstrating that xCT transporters are important regulators of extracellular glutamate. Consistent with previous studies showing that extracellular glutamate regulates postsynaptic glutamate receptor clustering, gb mutants show a large (200–300%) increase in the number of postsynaptic glutamate receptors. This increase in postsynaptic receptor abundance is not accompanied by other obvious synaptic changes and is completely rescued when synapses are cultured in wild-type levels of glutamate. Additional in situ pharmacology suggests that glutamate-mediated suppression of glutamate receptor clustering depends on receptor desensitization. Together, our results suggest that (1) xCT transporters are critical for regulation of ambient extracellular glutamate in vivo; (2) ambient extracellular glutamate maintains some receptors constitutively desensitized in vivo; and (3) constitutive desensitization of ionotropic glutamate receptors suppresses their ability to cluster at synapses.


Nature Neuroscience | 2008

A glial amino-acid transporter controls synapse strength and courtship in Drosophila

Yael Grosjean; Micheline Grillet; Hrvoje Augustin; Jean François Ferveur; David E. Featherstone

Mate choice is an evolutionarily critical decision that requires the detection of multiple sex-specific signals followed by central integration of these signals to direct appropriate behavior. The mechanisms controlling mate choice remain poorly understood. Here, we show that the glial amino-acid transporter genderblind controls whether Drosophila melanogaster males will attempt to mate with other males. Genderblind (gb) mutant males showed no alteration in heterosexual courtship or copulation, but were attracted to normally unappealing male species-specific chemosensory cues. As a result, genderblind mutant males courted and attempted to copulate with other Drosophila males. This homosexual behavior could be induced within hours using inducible RNAi, suggesting that genderblind controls nervous system function rather than its development. Consistent with this, and indicating that glial genderblind regulates ambient extracellular glutamate to suppress glutamatergic synapse strength in vivo, homosexual behavior could be turned on and off by altering glutamatergic transmission pharmacologically and/or genetically.


The Journal of Neuroscience | 2005

The 4.1 Protein Coracle Mediates Subunit-Selective Anchoring of Drosophila Glutamate Receptors to the Postsynaptic Actin Cytoskeleton

Kaiyun Chen; Carlos Merino; Stephan J. Sigrist; David E. Featherstone

Glutamatergic Drosophila neuromuscular junctions contain two spatially, biophysically, and pharmacologically distinct subtypes of postsynaptic glutamate receptor (GluR). These receptor subtypes appear to be molecularly identical except that A receptors contain the subunit GluRIIA (but not GluRIIB), and B receptors contain the subunit GluRIIB (but not GluRIIA). A- and B-type receptors are coexpressed in the same cells, in which they form homotypic clusters. During development, A- and B-type receptors can be differentially regulated. The mechanisms that allow differential segregation and regulation of A- and B-type receptors are unknown. Presumably, A- and B-type receptors are differentially anchored to the membrane cytoskeleton, but essentially nothing is known about how Drosophila glutamate receptors are localized or anchored. We identified coracle, a homolog of mammalian brain 4.1 proteins, in yeast two-hybrid and genetic screens for proteins that interact with and localize Drosophila glutamate receptors. Coracle interacts with the C terminus of GluRIIA but not GluRIIB. To test whether coracle is required for glutamate receptor localization, we immunocytochemically and electrophysiologically examined receptors in coracle mutants. In coracle mutants, synaptic A-type receptors are lost, but there is no detectable change in B-type receptor function or localization. Pharmacological disruption of postsynaptic actin phenocopies the coracle mutants, suggesting that A-type receptors are anchored to the actin cytoskeleton via coracle, whereas B-type receptors are anchored at the synapse by another (yet unknown) mechanism.


Brain Research Bulletin | 2000

Surprises from Drosophila: genetic mechanisms of synaptic development and plasticity

David E. Featherstone; Kendal Broadie

Drosophila are excellent models for the study of synaptic development and plasticity, thanks to the availability and applicability of a wide variety of powerful molecular, genetic, and cell-biology techniques. Three decades of study have led to an intimate understanding of the sequence of events leading to a functional and plastic synapse, yet many of the molecular mechanisms underlying these events are still poorly understood. Here, we provide a review of synaptogenesis at the Drosophila glutamatergic neuromuscular junction (NMJ). Next, we discuss the role of two proteins that forward genetic screens in Drosophila have revealed to play crucial-and completely unexpected-roles in NMJ development and plasticity: the origin of replication complex protein Latheo, and the enzyme glutamate decarboxylase. The requirement for these proteins at the NMJ highlights the fact that synaptic development and plasticity involves intense inter- and intracellular signaling about which we know almost nothing.


Journal of Cell Biology | 2009

Regulation of glutamate receptor subunit availability by microRNAs

Julie Karr; Vasia Vagin; Kaiyun Chen; Subhashree Ganesan; Oxana M. Olenkina; Vladimir A. Gvozdev; David E. Featherstone

The efficacy of synaptic transmission depends, to a large extent, on postsynaptic receptor abundance. The molecular mechanisms controlling receptor abundance are poorly understood. We tested whether abundance of postsynaptic glutamate receptors (GluRs) in Drosophila neuromuscular junctions is controlled by microRNAs, and provide evidence that it is. We show here that postsynaptic knockdown of dicer-1, the endoribonuclease necessary for microRNA synthesis, leads to large increases in postsynaptic GluR subunit messenger RNA and protein. Specifically, we measured increases in GluRIIA and GluRIIB but not GluRIIC. Further, knockout of MiR-284, a microRNA predicted to bind to GluRIIA and GluRIIB but not GluRIIC, increases expression of GluRIIA and GluRIIB but not GluRIIC proportional to the number of predicted binding sites in each transcript. Most of the de-repressed GluR protein, however, does not appear to be incorporated into functional receptors, and only minor changes in synaptic strength are observed, which suggests that microRNAs primarily regulate Drosophila receptor subunit composition rather than overall receptor abundance or synaptic strength.

Collaboration


Dive into the David E. Featherstone's collaboration.

Top Co-Authors

Avatar

Kaiyun Chen

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott A. Shippy

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Hrvoje Augustin

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Yael Grosjean

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Janet E. Richmond

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Julie Karr

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Qi Sheng

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sujeewa C. Piyankarage

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge