Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kendal Broadie is active.

Publication


Featured researches published by Kendal Broadie.


Neuron | 1995

Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects.

Sean T. Sweeney; Kendal Broadie; John Keane; Heiner Niemann; Cahir J. O'Kane

Tetanus toxin cleaves the synaptic vesicle protein synaptobrevin, and the ensuing loss of neurotransmitter exocytosis has implicated synaptobrevin in this process. To further the study of synaptic function in a genetically tractable organism and to generate a tool to disable neuronal communication for behavioural studies, we have expressed a gene encoding tetanus toxin light chain in Drosophila. Toxin expression in embryonic neurons removes detectable synaptobrevin and eliminates evoked, but not spontaneous, synaptic vesicle release. No other developmental or morphological defects are detected. Correspondingly, only synaptobrevin (n-syb), but not the ubiquitously expressed syb protein, is cleaved by tetanus toxin in vitro. Targeted expression of toxin can produce specific behavioral defects; in one case, the olfactory escape response is reduced.


Cell | 2001

Drosophila Fragile X-Related Gene Regulates the MAP1B Homolog Futsch to Control Synaptic Structure and Function

Yong Q. Zhang; Adina M. Bailey; Heinrich J. G. Matthies; Robert Renden; Mark A. Smith; Sean D. Speese; Gerald M. Rubin; Kendal Broadie

Fragile X mental retardation gene (FMR1) encodes an RNA binding protein that acts as a negative translational regulator. We have developed a Drosophila fragile X syndrome model using loss-of-function mutants and overexpression of the FMR1 homolog (dfxr). dfxr nulls display enlarged synaptic terminals, whereas neuronal overexpression results in fewer and larger synaptic boutons. Synaptic structural defects are accompanied by altered neurotransmission, with synapse type-specific regulation in central and peripheral synapses. These phenotypes mimic those observed in mutants of microtubule-associated Futsch. Immunoprecipitation of dFXR shows association with futsch mRNA, and Western analyses demonstrate that dFXR inversely regulates Futsch expression. dfxr futsch double mutants restore normal synaptic structure and function. We propose that dFXR acts as a translational repressor of Futsch to regulate microtubule-dependent synaptic growth and function.


Cell | 1996

A Drosophila Neurexin Is Required for Septate Junction and Blood-Nerve Barrier Formation and Function

Stefan Baumgartner; J. Troy Littleton; Kendal Broadie; Manzoor A. Bhat; Ruth Harbecke; Judith A. Lengyel; Ruth Chiquet-Ehrismann; Andreas Prokop; Hugo J. Bellen

Septate and tight junctions are thought to seal neighboring cells together and to function as barriers between epithelial cells. We have characterized a novel member of the neurexin family, Neurexin IV (NRX), which is localized to septate junctions (SJs) of epithelial and glial cells. NRX is a transmembrane protein with a cytoplasmic domain homologous to glycophorin C, a protein required for anchoring protein 4.1 in the red blood cell. Absence of NRX results in mislocalization of Coracle, a Drosophila protein 4.1 homolog, at SJs and causes dorsal closure defects similar to those observed in coracle mutants. nrx mutant embryos are paralyzed, and electrophysiological studies indicate that the lack of NRX in glial-glial SJs causes a breakdown of the blood-brain barrier. Electron microscopy demonstrates that nrx mutants lack the ladder-like intercellular septa characteristic of pleated SJs (pSJs). These studies identify NRX as the first transmembrane protein of SJ and demonstrate a requirement for NRX in the formation of septate-junction septa and intercellular barriers.


Neuron | 1995

Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila.

Kendal Broadie; Andreas Prokop; Hugo J. Bellen; Cahir J. O'Kane; Karen L. Schulze; Sean T. Sweeney

In synaptic transmission, vesicles are proposed to dock at presynaptic active zones by the association of synaptobrevin (v-SNARE) with syntaxin (t-SNARE). We test this hypothesis in Drosophila strains lacking neural synaptobrevin (n-synaptobrevin) or syntaxin. We showed previously that loss of either protein completely blocks synaptic transmission. Here, we attempt to establish the level of this blockade. Ultrastructurally, vesicles are still targeted to the presynaptic membrane and dock normally at specialized release sites. These vesicles are mature and functional since spontaneous vesicle fusion persists in the absence of n-synaptobrevin and since vesicle fusion is triggered by hyperosmotic saline in the absence of syntaxin. We conclude that the SNARE hypothesis cannot fully explain the role of these proteins in synaptic transmission. Instead, both proteins play distinct roles downstream of docking.


Cell | 1995

Genetic and electrophysiological studies of drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission

Karen L. Schulze; Kendal Broadie; Mark S. Perin; Hugo J. Bellen

Cloning and characterization of the Drosophila syntaxin-1A gene, syx-1A, reveal that it is present in several tissues but is predominantly expressed in the nervous system, where it is localized to axons and synapses. We have generated an allelic series of loss-of-function mutations that result in embryonic lethality with associated morphological and secretory defects dependent on the severity of the mutant allele. Electrophysiological recordings from partial loss-of-function mutants indicate absence of endogenous synaptic transmission at the neuromuscular junction and an 80% reduction of evoked transmission. Complete absence of syx-1A causes subtle morphological defects in the peripheral and central nervous systems, affects nonneural secretory events, and entirely abolishes neurotransmitter release. These data demonstrate that syntaxin plays a key role in nonneuronal secretion and is absolutely required for evoked neurotransmission.


Nature Neuroscience | 1999

Drosophila Unc-13 is essential for synaptic transmission

Bharathi Aravamudan; Tim Fergestad; Warren S. Davis; Christopher K. Rodesch; Kendal Broadie

The UNC-13 protein family has been suggested to be critical for synaptic vesicle dynamics based on its interactions with Syntaxin, Munc-18 and Doc 2α. We cloned the Drosophila homolog (Dunc-13) and characterized its function using a combination of electrophysiology and ultrastructural analyses. Dunc-13 contained a C1 lipid-binding motif and two C2 calcium-binding domains, and its expression was restricted to neurons. Elimination of dunc-13 expression abolished synaptic transmission, an effect comparable only to removal of the core complex proteins Syntaxin and Synaptobrevin. Transmitter release remained impaired under elevated calcium influx or application of hyperosmotic saline. Ultrastructurally, mutant terminals accumulated docked vesicles at presynaptic release sites. We conclude that Dunc-13 is essential for a stage of neurotransmission following vesicle docking and before fusion.


Cell | 1995

Gliotactin, a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier in drosophila

Vanessa J. Auld; Richard D. Fetter; Kendal Broadie; Corey S. Goodman

Peripheral glia help ensure that motor and sensory axons are bathed in the appropriate ionic and biochemical environment. In Drosophila, peripheral glia help shield these axons against the high K+ concentration of the hemolymph, which would largely abolish their excitability. Here, we describe the molecular genetic analysis of gliotactin, a novel transmembrane protein that is transiently expressed on peripheral glia and that is required for the formation of the peripheral blood-nerve barrier. In gliotactin mutant embryos, the peripheral glia develop normally in many respects, except that ultrastructurally and physiologically they do not form a complete blood-nerve barrier. As a result, peripheral motor axons are exposed to the high K+ hemolymph, action potentials fail to propagate, and the embryos are nearly paralyzed.


Neuron | 1994

Mutations in the drosophila Rop gene suggest a function in general secretion and synaptic transmission

Stephen D. Harrison; Kendal Broadie; Jana van de Goor; Gerald M. Rubin

The Drosophila protein Rop shows similarity with the Sec1p protein of S. cerevisiae. Sec1p has an essential role in secretion, whereas most related proteins from higher organisms are hypothesized to function in neurotransmitter release. We show that, like the latter proteins, Rop is expressed in the nervous system, but it is expressed in other tissues as well, many of which are actively engaged in secretion. We have isolated mutations in the Rop gene and find that the extracellular accumulation of a number of normally secreted cellular products fails to occur in null mutant animals, which subsequently die at a late embryonic stage. Electrophysiological recordings on temperature-sensitive Rop mutants show that reductions in Rop activity result in a loss of the normal synaptic response to a light stimulus. These data suggest that a member of the Sec1p class of proteins has an in vivo function in both general secretion and synaptic transmission.


Current Biology | 2003

The ubiquitin proteasome system acutely regulates presynaptic protein turnover and synaptic efficacy

Sean D. Speese; Nick Trotta; Christopher K. Rodesch; Bharathi Aravamudan; Kendal Broadie

BACKGROUND The ubiquitin proteasome system (UPS) mediates regulated protein degradation and provides a mechanism for closely controlling protein abundance in spatially restricted domains within cells. We hypothesized that the UPS may acutely determine the local concentration of key regulatory proteins at neuronal synapses as a means for locally modulating synaptic efficacy and the strength of neurotransmission communication. RESULTS We investigated this hypothesis at the Drosophila neuromuscular synapse by using an array of genetic and pharmacological tools. This study demonstrates that UPS components are present in presynaptic boutons and that the UPS functions locally in the presynaptic compartment to rapidly eliminate a conditional transgenic reporter of proteasome activity. We assayed a panel of synaptic proteins to determine whether the UPS acutely regulates the local abundance of native synaptic targets. Both acute pharmacological inhibition of the proteasome (<1 hr) and targeted genetic perturbation of proteasome function in the presynaptic neuron cause the specific accumulation of the essential synaptic vesicle-priming protein DUNC-13. Most importantly, acute pharmacological inhibition of the proteasome (<1 hr) causes a rapid strengthening of neurotransmission (an approximately 50% increase in evoked amplitude) because of increased presynaptic efficacy. The proteasome-dependent regulation of presynaptic protein abundance, both of the exogenous reporter and native DUNC-13, and the modulation of presynaptic neurotransmitter release occur on an intermediate, rapid (tens of minutes) timescale. CONCLUSIONS Taken together, these studies demonstrate that the UPS functions locally within synaptic boutons to acutely control levels of presynaptic protein and that the rate of UPS-dependent protein degradation is a primary determinant of neurotransmission strength.


Current Biology | 2004

The hereditary spastic paraplegia gene, spastin, regulates microtubule stability to modulate synaptic structure and function.

Nick Trotta; Genny Orso; Maria Giovanna Rossetto; Andrea Daga; Kendal Broadie

BACKGROUND Hereditary Spastic Paraplegia (HSP) is a devastating neurological disease causing spastic weakness of the lower extremities and eventual axonal degeneration. Over 20 genes have been linked to HSP in humans; however, mutations in one gene, spastin (SPG4), are the cause of >40% of all cases. Spastin is a member of the ATPases associated with diverse cellular activities (AAA) protein family, and contains a microtubule interacting and organelle transport (MIT) domain. Previous work in cell culture has proposed a role for Spastin in regulating microtubules. RESULTS Employing Drosophila transgenic methods for overexpression and RNA interference (RNAi), we have investigated the role of Spastin in vivo. We show that Drosophila Spastin (D-Spastin) is enriched in axons and synaptic connections. At neuromuscular junctions (NMJ), Dspastin RNAi causes morphological undergrowth and reduced synaptic area. Moreover, Dspastin overexpression reduces synaptic strength, whereas Dspastin RNAi elevates synaptic currents. By using antibodies against posttranslationally modified alpha-Tubulin, we find that Dspastin regulates microtubule stability. Functional synaptic defects caused by Dspastin RNAi and overexpression were pharmacologically alleviated by agents that destabilize and stabilize microtubules, respectively. CONCLUSIONS Loss of Dspastin in Drosophila causes an aberrantly stabilized microtubule cytoskeleton in neurons and defects in synaptic growth and neurotransmission. These in vivo data strongly support previous reports, providing a probable cause for the neuronal dysfunction in spastin-linked HSP disease. The role of Spastin in regulating neuronal microtubule stability suggests therapeutic targets for HSP treatment and may provide insight into neurological disorders linked to microtubule dysfunction.

Collaboration


Dive into the Kendal Broadie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Bate

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Featherstone

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Yong Q. Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge