Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. Goldgar is active.

Publication


Featured researches published by David E. Goldgar.


The New England Journal of Medicine | 2014

Breast-Cancer Risk in Families with Mutations in PALB2

Antonis C. Antoniou; Silvia Casadei; Tuomas Heikkinen; Daniel Barrowdale; Katri Pylkäs; Jonathan C. Roberts; Andrew Lee; Deepak Subramanian; Kim De Leeneer; Florentia Fostira; Eva Tomiak; Susan L. Neuhausen; Zhi L Teo; Sofia Khan; Kristiina Aittomäki; Jukka S. Moilanen; Clare Turnbull; Sheila Seal; Arto Mannermaa; Anne Kallioniemi; Geoffrey J. Lindeman; Saundra S. Buys; Irene L. Andrulis; Paolo Radice; Carlo Tondini; Siranoush Manoukian; Amanda Ewart Toland; Penelope Miron; Jeffrey N. Weitzel; Susan M. Domchek

BACKGROUNDnGermline loss-of-function mutations in PALB2 are known to confer a predisposition to breast cancer. However, the lifetime risk of breast cancer that is conferred by such mutations remains unknown.nnnMETHODSnWe analyzed the risk of breast cancer among 362 members of 154 families who had deleterious truncating, splice, or deletion mutations in PALB2. The age-specific breast-cancer risk for mutation carriers was estimated with the use of a modified segregation-analysis approach that allowed for the effects of PALB2 genotype and residual familial aggregation.nnnRESULTSnThe risk of breast cancer for female PALB2 mutation carriers, as compared with the general population, was eight to nine times as high among those younger than 40 years of age, six to eight times as high among those 40 to 60 years of age, and five times as high among those older than 60 years of age. The estimated cumulative risk of breast cancer among female mutation carriers was 14% (95% confidence interval [CI], 9 to 20) by 50 years of age and 35% (95% CI, 26 to 46) by 70 years of age. Breast-cancer risk was also significantly influenced by birth cohort (P<0.001) and by other familial factors (P=0.04). The absolute breast-cancer risk for PALB2 female mutation carriers by 70 years of age ranged from 33% (95% CI, 25 to 44) for those with no family history of breast cancer to 58% (95% CI, 50 to 66) for those with two or more first-degree relatives with breast cancer at 50 years of age.nnnCONCLUSIONSnLoss-of-function mutations in PALB2 are an important cause of hereditary breast cancer, with respect both to the frequency of cancer-predisposing mutations and to the risk associated with them. Our data suggest the breast-cancer risk for PALB2 mutation carriers may overlap with that for BRCA2 mutation carriers. (Funded by the European Research Council and others.).


JAMA Oncology | 2017

Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer

Fergus J. Couch; Hermela Shimelis; Chunling Hu; Steven N. Hart; Eric C. Polley; Jie Na; Emily Hallberg; Raymond Moore; Abigail Thomas; Jenna Lilyquist; Bingjian Feng; Rachel McFarland; Tina Pesaran; Robert Huether; Holly LaDuca; Elizabeth C. Chao; David E. Goldgar; Jill S. Dolinsky

Importance Germline pathogenic variants in BRCA1 and BRCA2 predispose to an increased lifetime risk of breast cancer. However, the relevance of germline variants in other genes from multigene hereditary cancer testing panels is not well defined. Objective To determine the risks of breast cancer associated with germline variants in cancer predisposition genes. Design, Setting, and Participants A study population of 65 057 patients with breast cancer receiving germline genetic testing of cancer predisposition genes with hereditary cancer multigene panels. Associations between pathogenic variants in non-BRCA1 and non-BRCA2 predisposition genes and breast cancer risk were estimated in a case-control analysis of patients with breast cancer and Exome Aggregation Consortium reference controls. The women underwent testing between March 15, 2012, and June 30, 2016. Main Outcomes and Measures Breast cancer risk conferred by pathogenic variants in non-BRCA1 and non-BRCA2 predisposition genes. Results The mean (SD) age at diagnosis for the 65 057 women included in the analysis was 48.5 (11.1) years. The frequency of pathogenic variants in 21 panel genes identified in 41 611 consecutively tested white women with breast cancer was estimated at 10.2%. After exclusion of BRCA1, BRCA2, and syndromic breast cancer genes (CDH1, PTEN, and TP53), observed pathogenic variants in 5 of 16 genes were associated with high or moderately increased risks of breast cancer: ATM (OR, 2.78; 95% CI, 2.22-3.62), BARD1 (OR, 2.16; 95% CI, 1.31-3.63), CHEK2 (OR, 1.48; 95% CI, 1.31-1.67), PALB2 (OR, 7.46; 95% CI, 5.12-11.19), and RAD51D (OR, 3.07; 95% CI, 1.21-7.88). Conversely, variants in the BRIP1 and RAD51C ovarian cancer risk genes; the MRE11A, RAD50, and NBN MRN complex genes; the MLH1 and PMS2 mismatch repair genes; and NF1 were not associated with increased risks of breast cancer. Conclusions and Relevance This study establishes several panel genes as high- and moderate-risk breast cancer genes and provides estimates of breast cancer risk associated with pathogenic variants in these genes among individuals qualifying for clinical genetic testing.


Cancer Epidemiology, Biomarkers & Prevention | 2017

The OncoArray Consortium: a Network for Understanding the Genetic Architecture of Common Cancers.

Christopher I. Amos; Joe Dennis; Zhaoming Wang; Jinyoung Byun; Fredrick R. Schumacher; Simon A. Gayther; Graham Casey; David J. Hunter; Thomas A. Sellers; Stephen B. Gruber; Alison M. Dunning; Kyriaki Michailidou; Laura Fachal; Kimberly F. Doheny; Amanda B. Spurdle; Yafang Li; Xiangjun Xiao; Jane Romm; Elizabeth W. Pugh; Gerhard A. Coetzee; Dennis J. Hazelett; Stig E. Bojesen; Charlisse F. Caga-anan; Christopher A. Haiman; Ahsan Kamal; Craig Luccarini; Daniel C. Tessier; Daniel Vincent; Francois Bacot; David Van Den Berg

Background: Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wide backbone, comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping of known susceptibility regions, rare variants from sequencing experiments, pharmacogenetic markers, and cancer-related traits. Methods: The OncoArray can be genotyped using a novel technology developed by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers, and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy among centers and by ethnic background. Results: The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring algorithm based on principal components analysis. Conclusions: Results from these analyses will enable researchers to identify new susceptibility loci, perform fine-mapping of new or known loci associated with either single or multiple cancers, assess the degree of overlap in cancer causation and pleiotropic effects of loci that have been identified for disease-specific risk, and jointly model genetic, environmental, and lifestyle-related exposures. Impact: Ongoing analyses will shed light on etiology and risk assessment for many types of cancer. Cancer Epidemiol Biomarkers Prev; 26(1); 126–35. ©2016 AACR.


Breast Cancer Research and Treatment | 2015

Mutation screening of PALB2 in clinically ascertained families from the Breast Cancer Family Registry

Tú Nguyen-Dumont; Fleur Hammet; Maryam Mahmoodi; Helen Tsimiklis; Zhi L Teo; Roger Li; Bernard J. Pope; Mary Beth Terry; Saundra S. Buys; Mary B. Daly; John L. Hopper; Ingrid Winship; David E. Goldgar; Daniel J. Park; Melissa C. Southey

AbstractLoss-of-function mutations in PALB2 are associated with an increased risk of breast cancer, with recent data showing that female breast cancer risks for PALB2 mutation carriers are comparable in magnitude to those for BRCA2 mutation carriers. This study applied targeted massively parallel sequencing to characterize the mutation spectrum of PALB2 in probands attending breast cancer genetics clinics in the USA. The coding regions and proximal intron–exon junctions of PALB2 were screened in probands not known to carry a mutation in BRCA1 or BCRA2 from 1,250 families enrolled through familial cancer clinics by the Breast Cancer Family Registry. Mutation screening was performed using Hi-Plex, an amplicon-based targeted massively parallel sequencing platform. Screening of PALB2 was successful in 1,240/1,250 probands and identified nine women with protein-truncating mutations (three nonsense mutations and five frameshift mutations). Four of the 33 missense variants were predicted to be deleterious to protein function by in silico analysis using two different programs. Analysis of tumors from carriers of truncating mutations revealed that the majority were high histological grade, invasive ductal carcinomas. Young onset was apparent in most families, with 19 breast cancers under 50xa0years of age, including eight under the age of 40xa0years. Our data demonstrate the utility of Hi-Plex in the context of high-throughput testing for rare genetic mutations and provide additional timely information about the nature and prevalence of PALB2 mutations, to enhance risk assessment and risk management of women at high risk of cancer attending clinical genetic services.n


Journal of Dermatological Science | 2013

Report of a novel OCA2 gene mutation and an investigation of OCA2 variants on melanoma risk in a familial melanoma pedigree

Jason E. Hawkes; Pamela B. Cassidy; Prashiela Manga; Raymond E. Boissy; David E. Goldgar; Lisa A. Cannon-Albright; Scott R. Florell; Sancy A. Leachman

BACKGROUNDnOculocutaneous albinism type 2 (OCA2) is caused by mutations of the OCA2 gene. Individuals affected by OCA2 as well as other types of albinism are at a significantly increased risk for sun-induced skin-cancers, including malignant melanoma (MM).nnnOBJECTIVEnTo identify the molecular etiology of oculocutaneous albinism in a previously uncharacterized melanoma pedigree and to investigate the relationship between two OCA2 variants and melanoma predisposition in this pedigree.nnnMETHODSnDNA and RNA were isolated from the peripheral blood of seven patients in a familial melanoma pedigree. Electron microscopy was performed on the individual with clinical oculocutaneous albinism. OCA2, TYRP1, MC1R, CDKN2A/p16, CDKN2A/p19ARF, and CDK4 genes were sequenced in affected individuals. The relationship between OCA2 variants and melanoma was assessed using a pedigree likelihood-based method.nnnRESULTSnThe proband was determined to be an OCA2 compound heterozygous mutation carrier with a previously reported conservative missense mutation (V443I) and a novel non-conservative missense mutation (L734R). The pedigree contained individuals diagnosed with both cutaneous and iris melanoma. Based on co-segregation analysis, the odds of these OCA2 variants being high penetrance loci for melanoma was: 1.3-to-1 if we include the iris melanoma as affected and 6.5-to-1 if we only consider cutaneous melanoma as affected.nnnCONCLUSIONnThe discovery of this novel OCA2 variant adds to the body of evidence on the detrimental effects of OCA2 gene mutations on pigmentation, supports existing GWAS data on the relevance of the OCA2 gene in melanoma predisposition, and may ultimately assist in the development of targeted molecular therapies in the treatment of OCA and melanoma.


PLOS ONE | 2014

Multifactorial likelihood assessment of BRCA1 and BRCA2 missense variants confirms that BRCA1:c.122A>G(p.His41Arg) is a pathogenic mutation

Phillip Whiley; Michael T. Parsons; Jennifer A. Leary; Katherine L. Tucker; Linda Warwick; Belinda Dopita; Heather Thorne; Sunil R. Lakhani; David E. Goldgar; Melissa A. Brown; Amanda B. Spurdle

Rare exonic, non-truncating variants in known cancer susceptibility genes such as BRCA1 and BRCA2 are problematic for genetic counseling and clinical management of relevant families. This study used multifactorial likelihood analysis and/or bioinformatically-directed mRNA assays to assess pathogenicity of 19 BRCA1 or BRCA2 variants identified following patient referral to clinical genetic services. Two variants were considered to be pathogenic (Class 5). BRCA1:c.4484G> C(p.Arg1495Thr) was shown to result in aberrant mRNA transcripts predicted to encode truncated proteins. The BRCA1:c.122A>G(p.His41Arg) RING-domain variant was found from multifactorial likelihood analysis to have a posterior probability of pathogenicity of 0.995, a result consistent with existing protein functional assay data indicating lost BARD1 binding and ubiquitin ligase activity. Of the remaining variants, seven were determined to be not clinically significant (Class 1), nine were likely not pathogenic (Class 2), and one was uncertain (Class 3).These results have implications for genetic counseling and medical management of families carrying these specific variants. They also provide additional multifactorial likelihood variant classifications as reference to evaluate the sensitivity and specificity of bioinformatic prediction tools and/or functional assay data in future studies.


American Journal of Human Genetics | 2018

Assessment of the Clinical Relevance of BRCA2 Missense Variants by Functional and Computational Approaches

Lucia Guidugli; Hermela Shimelis; David L. Masica; Vernon S. Pankratz; Gary Lipton; Namit Singh; Chunling Hu; Alvaro N.A. Monteiro; Noralane M. Lindor; David E. Goldgar; Rachel Karchin; Edwin S. Iversen; Fergus J. Couch

Many variants of uncertain significance (VUS) have been identified in BRCA2 through clinical genetic testing. VUS pose a significant clinical challenge because the contribution of these variants to cancer risk has not been determined. We conducted a comprehensive assessment of VUS in the BRCA2 C-terminal DNA binding domain (DBD) by using a validated functional assay of BRCA2 homologous recombination (HR) DNA-repair activity and defined a classifier of variant pathogenicity. Among 139 variants evaluated, 54 had ?99% probability of pathogenicity, and 73 had ?95% probability of neutrality. Functional assay results were compared with predictions of variant pathogenicity from the Align-GVGD protein-sequence-based prediction algorithm, which has been used for variant classification. Relative to the HR assay, Align-GVGD significantly (p < 0.05) over-predicted pathogenic variants. We subsequently combined functional and Align-GVGD prediction results in a Bayesian hierarchical model (VarCall) to estimate the overall probability of pathogenicity for each VUS. In addition, to predict the effects of all other BRCA2 DBD variants and to prioritize variants for functional studies, we used the endoPhenotype-Optimized Sequence Ensemble (ePOSE) algorithm to train classifiers for BRCA2 variants by using data from the HR functional assay. Together, the results show that systematic functional assays in combination with in silico predictors of pathogenicity provide robust tools for clinical annotation of BRCA2 VUS.


Journal of Medical Genetics | 2018

The BRCA1 c. 5096G>A p.Arg1699Gln (R1699Q) intermediate risk variant: breast and ovarian cancer risk estimation and recommendations for clinical management from the ENIGMA consortium

Setareh Moghadasi; Huong Meeks; Maaike P.G. Vreeswijk; Linda A.M. Janssen; Åke Borg; Hans Ehrencrona; Ylva Paulsson-Karlsson; Barbara Wappenschmidt; Christoph Engel; Andrea Gehrig; Norbert Arnold; Thomas V O Hansen; Mads Thomassen; Uffe Birk Jensen; Torben A. Kruse; Bent Ejlertsen; Anne-Marie Gerdes; Inge Søkilde Pedersen; Sandrine M. Caputo; Fergus J. Couch; Emily Hallberg; Ans van den Ouweland; J. Margriet Collée; Erik Teugels; Muriel A. Adank; Rob B. van der Luijt; Arjen R. Mensenkamp; Jan C. Oosterwijk; Marinus J. Blok; Nicolas Janin

Background We previously showed that the BRCA1 variant c.5096G>A p.Arg1699Gln (R1699Q) was associated with an intermediate risk of breast cancer (BC) and ovarian cancer (OC). This study aimed to assess these cancer risks for R1699Q carriers in a larger cohort, including follow-up of previously studied families, to further define cancer risks and to propose adjusted clinical management of female BRCA1*R1699Q carriers. Methods Data were collected from 129 BRCA1*R1699Q families ascertained internationally by ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles) consortium members. A modified segregation analysis was used to calculate BC and OC risks. Relative risks were calculated under both monogenic model and major gene plus polygenic model assumptions. Results In this cohort the cumulative risk of BC and OC by age 70 years was 20% and 6%, respectively. The relative risk for developing cancer was higher when using a model that included the effects of both the R1699Q variant and a residual polygenic component compared with monogenic model (for BC 3.67 vs 2.83, and for OC 6.41 vs 5.83). Conclusion Our results confirm that BRCA1*R1699Q confers an intermediate risk for BC and OC. Breast surveillance for female carriers based on mammogram annually from age 40 is advised. Bilateral salpingo-oophorectomy should be considered based on family history.


Journal of the National Cancer Institute | 2018

Triple-Negative Breast Cancer Risk Genes Identified by Multigene Hereditary Cancer Panel Testing

Hermela Shimelis; Holly LaDuca; Chunling Hu; Steven N. Hart; Jie Na; Abigail Thomas; Margaret Akinhanmi; Raymond Moore; Hiltrud Brauch; Angela Cox; Diana Eccles; Amanda Ewart-Toland; Peter A. Fasching; Florentia Fostira; Judy Garber; Andrew K. Godwin; Irene Konstantopoulou; Heli Nevanlinna; Priyanka Sharma; Drakoulis Yannoukakos; Song Yao; Bingjian Feng; Brigette Tippin Davis; Jenna Lilyquist; Tina Pesaran; David E. Goldgar; Eric C. Polley; Jill S. Dolinsky; Fergus J. Couch

Abstract Background Germline genetic testing with hereditary cancer gene panels can identify women at increased risk of breast cancer. However, those at increased risk of triple-negative (estrogen receptor–negative, progesterone receptor–negative, human epidermal growth factor receptor–negative) breast cancer (TNBC) cannot be identified because predisposition genes for TNBC, other than BRCA1, have not been established. The aim of this study was to define the cancer panel genes associated with increased risk of TNBC. Methods Multigene panel testing for 21 genes in 8753 TNBC patients was performed by a clinical testing laboratory, and testing for 17 genes in 2148 patients was conducted by a Triple Negative Breast Cancer Consortium (TNBCC) of research studies. Associations between deleterious mutations in cancer predisposition genes and TNBC were evaluated using results from TNBC patients and reference controls. Results Germline pathogenic variants in BARD1, BRCA1, BRCA2, PALB2, and RAD51D were associated with high risk (odds ratio > 5.0) of TNBC and greater than 20% lifetime risk for overall breast cancer among Caucasians. Pathogenic variants in BRIP1, RAD51C, and TP53 were associated with moderate risk (odds ratio > 2) of TNBC. Similar trends were observed for the African American population. Pathogenic variants in these TNBC genes were detected in 12.0% (3.7% non-BRCA1/2) of all participants. Conclusions Multigene hereditary cancer panel testing can identify women with elevated risk of TNBC due to mutations in BARD1, BRCA1, BRCA2, PALB2, and RAD51D. These women can potentially benefit from improved screening, risk management, and cancer prevention strategies. Patients with mutations may also benefit from specific targeted therapeutic strategies.


Human Mutation | 2018

BRCA1 and BRCA2 5′ noncoding region variants identified in breast cancer patients alter promoter activity and protein binding

Leslie J. Burke; Jan Sevcik; Gaetana Gambino; Emma Tudini; Eliseos J. Mucaki; Ben C. Shirley; Phillip Whiley; Michael T. Parsons; Kim De Leeneer; Sara Gutiérrez-Enríquez; M. T. Santamarina; Sandrine M. Caputo; Elizabeth Santana dos Santos; Jana Soukupova; Marketa Janatova; Petra Zemankova; Klara Lhotova; Lenka Stolarova; Mariana Borecka; Alejandro Moles-Fernández; Siranoush Manoukian; Bernardo Bonanni; Stacey L. Edwards; Marinus J. Blok; Thomas V O Hansen; Maria Rossing; Orland Diez; Ana Vega; Kathleen Claes; David E. Goldgar

The widespread use of next generation sequencing for clinical testing is detecting an escalating number of variants in noncoding regions of the genome. The clinical significance of the majority of these variants is currently unknown, which presents a significant clinical challenge. We have screened over 6,000 early‐onset and/or familial breast cancer (BC) cases collected by the ENIGMA consortium for sequence variants in the 5′ noncoding regions of BC susceptibility genes BRCA1 and BRCA2, and identified 141 rare variants with global minor allele frequency < 0.01, 76 of which have not been reported previously. Bioinformatic analysis identified a set of 21 variants most likely to impact transcriptional regulation, and luciferase reporter assays detected altered promoter activity for four of these variants. Electrophoretic mobility shift assays demonstrated that three of these altered the binding of proteins to the respective BRCA1 or BRCA2 promoter regions, including NFYA binding to BRCA1:c.‐287C>T and PAX5 binding to BRCA2:c.‐296C>T. Clinical classification of variants affecting promoter activity, using existing prediction models, found no evidence to suggest that these variants confer a high risk of disease. Further studies are required to determine if such variation may be associated with a moderate or low risk of BC.

Collaboration


Dive into the David E. Goldgar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhi L Teo

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda B. Spurdle

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fleur Hammet

University of Melbourne

View shared research outputs
Researchain Logo
Decentralizing Knowledge