Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. K. Ferrier is active.

Publication


Featured researches published by David E. K. Ferrier.


Nature | 2008

The amphioxus genome and the evolution of the chordate karyotype.

Nicholas H. Putnam; Thomas Butts; David E. K. Ferrier; Rebecca F. Furlong; Uffe Hellsten; Takeshi Kawashima; Marc Robinson-Rechavi; Eiichi Shoguchi; Astrid Terry; Jr-Kai Yu; E grave; lia Benito-Gutiérrez; Inna Dubchak; Jordi Garcia-Fernàndez; Jeremy J. Gibson-Brown; Igor V. Grigoriev; Amy C. Horton; Pieter J. de Jong; Jerzy Jurka; Vladimir V. Kapitonov; Yuji Kohara; Yoko Kuroki; Erika Lindquist; Susan Lucas; Kazutoyo Osoegawa; Len A. Pennacchio; Asaf Salamov; Yutaka Satou; Tatjana Sauka-Spengler; Jeremy Schmutz

Lancelets (‘amphioxus’) are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic ∼520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.


Genome Research | 2008

The amphioxus genome illuminates vertebrate origins and cephalochordate biology

Linda Z. Holland; Ricard Albalat; Kaoru Azumi; Èlia Benito-Gutiérrez; Matthew J. Blow; Marianne Bronner-Fraser; Frédéric Brunet; Thomas Butts; Simona Candiani; Larry J. Dishaw; David E. K. Ferrier; Jordi Garcia-Fernàndez; Jeremy J. Gibson-Brown; Carmela Gissi; Adam Godzik; Finn Hallböök; Dan Hirose; Kazuyoshi Hosomichi; Tetsuro Ikuta; Hidetoshi Inoko; Masanori Kasahara; Jun Kasamatsu; Takeshi Kawashima; Ayuko Kimura; Masaaki Kobayashi; Zbynek Kozmik; Kaoru Kubokawa; Vincent Laudet; Gary W. Litman; Alice C. McHardy

Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development, nuclear receptor genes, genes encoding components of the endocrine and immune systems, and conserved cis-regulatory enhancers. The amphioxus genome contains a basic set of chordate genes involved in development and cell signaling, including a fifteenth Hox gene. This set includes many genes that were co-opted in vertebrates for new roles in neural crest development and adaptive immunity. However, where amphioxus has a single gene, vertebrates often have two, three, or four paralogs derived from two whole-genome duplication events. In addition, several transcriptional enhancers are conserved between amphioxus and vertebrates--a very wide phylogenetic distance. In contrast, urochordate genomes have lost many genes, including a diversity of homeobox families and genes involved in steroid hormone function. The amphioxus genome also exhibits derived features, including duplications of opsins and genes proposed to function in innate immunity and endocrine systems. Our results indicate that the amphioxus genome is elemental to an understanding of the biology and evolution of nonchordate deuterostomes, invertebrate chordates, and vertebrates.


Cell | 2007

Molecular Architecture of Annelid Nerve Cord Supports Common Origin of Nervous System Centralization in Bilateria

Alexandru S. Denes; Gáspár Jékely; Patrick R. H. Steinmetz; Florian Raible; Heidi Snyman; Benjamin Prud'homme; David E. K. Ferrier; Guillaume Balavoine; Detlev Arendt

To elucidate the evolutionary origin of nervous system centralization, we investigated the molecular architecture of the trunk nervous system in the annelid Platynereis dumerilii. Annelids belong to Bilateria, an evolutionary lineage of bilateral animals that also includes vertebrates and insects. Comparing nervous system development in annelids to that of other bilaterians could provide valuable information about the common ancestor of all Bilateria. We find that the Platynereis neuroectoderm is subdivided into longitudinal progenitor domains by partially overlapping expression regions of nk and pax genes. These domains match corresponding domains in the vertebrate neural tube and give rise to conserved neural cell types. As in vertebrates, neural patterning genes are sensitive to Bmp signaling. Our data indicate that this mediolateral architecture was present in the last common bilaterian ancestor and thus support a common origin of nervous system centralization in Bilateria.


Nature Methods | 2014

Light-sheet microscopy using an Airy beam

Tom Vettenburg; Heather I C Dalgarno; Jonathan Nylk; Clara Coll-Lladó; David E. K. Ferrier; Tomáš Čižmár; Frank Gunn-Moore; Kishan Dholakia

Light-sheet microscopy facilitates rapid, high-contrast, volumetric imaging with minimal sample exposure. However, the rapid divergence of a traditional Gaussian light sheet restricts the field of view (FOV) that provides innate subcellular resolution. We show that the Airy beam innately yields high contrast and resolution up to a tenfold larger FOV. In contrast to the Bessel beam, which also provides an increased FOV, the Airy beams characteristic asymmetric excitation pattern results in all fluorescence contributing positively to the contrast, enabling a step change for light-sheet microscopy.


Science | 2005

Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii.

Florian Raible; Kristin Tessmar-Raible; Kazutoyo Osoegawa; Patrick Wincker; Claire Jubin; Guillaume Balavoine; David E. K. Ferrier; Vladimir Benes; Pieter J. de Jong; Jean Weissenbach; Peer Bork; Detlev Arendt

Previous genome comparisons have suggested that one important trend in vertebrate evolution has been a sharp rise in intron abundance. By using genomic data and expressed sequence tags from the marine annelid Platynereis dumerilii, we provide direct evidence that about two-thirds of human introns predate the bilaterian radiation but were lost from insect and nematode genomes to a large extent. A comparison of coding exon sequences confirms the ancestral nature of Platynereis and human genes. Thus, the urbilaterian ancestor had complex, intron-rich genes that have been retained in Platynereis and human.


Evolution & Development | 2000

The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14

David E. K. Ferrier; Carolina Minguillón; Peter W. H. Holland; Jordi Garcia-Fernàndez

SUMMARY The amphioxus (Branchiostoma floridae) Hox cluster is a model for the ancestral vertebrate cluster, prior to the hypothesized genome‐wide duplications that may have facilitated the evolution of the vertebrate body plan. Here we describe the posterior (5′) genes of the amphioxus cluster, and report the isolation of four new homeobox genes. Vertebrates possess 13 types of Hox gene (paralogy groups), but we show that amphioxus possesses more than 13 Hox genes. Amphioxus is now the first animal in which a Hox14 gene has been found. Our mapping and phylogenetic analysis of amphioxus “Posterior Class” Hox genes reveals that these genes are evolving at a faster rate in deuterostomes than in protostomes, a phenomenon we term Posterior Flexibility.


Molecular Phylogenetics and Evolution | 2002

Ciona intestinalis ParaHox genes: evolution of Hox/ParaHox cluster integrity, developmental mode, and temporal colinearity.

David E. K. Ferrier; Peter W. H. Holland

The Hox gene cluster, and its evolutionary sister the ParaHox gene cluster, pattern the anterior-posterior axis of animals. The spatial and temporal regulation of the genes seems to be intimately linked to the gene order within the clusters. In some animals the tight organisation of the clusters has disintegrated. We note that these animals develop in a derived fashion relative to the norm of their respective lineages. Here we present the genomic organisation of the ParaHox genes of Ciona intestinalis, and note that tight clustering has been lost in evolution. We present a hypothesis that the Hox and ParaHox clusters are constrained as ordered clusters by the mechanisms producing temporal colinearity; when temporal colinearity is no longer needed or used during development, the clusters can fall apart. This disintegration may be mediated by the invasion of transposable elements into the clusters, and subsequent genomic rearrangements.


Development Genes and Evolution | 2008

Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae.

Naohito Takatori; Thomas Butts; Simona Candiani; Mario Pestarino; David E. K. Ferrier; Hidetoshi Saiga; Peter W. H. Holland

The homeobox genes comprise a large and diverse gene superfamily, many of which encode transcription factors with pivotal roles in the embryonic development of animals. We searched the assembled draft genome sequence of an amphioxus, Branchiostoma floridae, for genes possessing homeobox sequences. Phylogenetic analysis was used to divide these into gene families and classes. The 133 amphioxus homeobox genes comprise 60 ANTP class genes, 29 PRD genes (excluding Pon and Pax1/9), nine TALE genes, seven POU genes, seven LIM genes, five ZF genes, four CUT genes, four HNF genes, three SINE genes, one CERS gene, one PROS gene, and three unclassified genes. Ten of the 11 homeobox gene classes are less diverse in amphioxus than humans, as a result of gene duplication on the vertebrate lineage. Amphioxus possesses at least one member for all of the 96 homeobox gene families inferred to be present in the common ancestor of chordates, including representatives of the Msxlx, Bari, Abox, Nk7, Ro, and Repo gene families that have been lost from tunicates and vertebrates. We find duplication of several homeobox genes in the cephalochordate lineage (Mnx, Evx, Emx, Vent, Nk1, Nedx, Uncx, Lhx2/9, Hmbox, Pou3, and Irx) and several divergent genes that probably originated by extensive sequence divergence (Hx, Ankx, Lcx, Acut, Atale, Azfh, Ahbx, Muxa, Muxb, Aprd1–6, and Ahnf). The analysis reveals not only the repertoire of amphioxus homeobox genes but also gives insight into the evolution of chordate homeobox genes.


Insect Molecular Biology | 2010

Comprehensive survey of developmental genes in the pea aphid, Acyrthosiphon pisum: frequent lineage‐specific duplications and losses of developmental genes

Shuji Shigenobu; Ryan D. Bickel; Jennifer A. Brisson; Thomas Butts; C. C. Chang; Olivier Christiaens; Gregory K. Davis; Elizabeth J. Duncan; David E. K. Ferrier; Masatoshi Iga; Ralf Janssen; G. W Lin; Hsiao ling Lu; Alistair P. McGregor; Toru Miura; Guy Smagghe; James M Smith; M. van der Zee; Rodrigo A. Velarde; Megan J. Wilson; Peter K. Dearden; David L. Stern

Aphids exhibit unique attributes, such as polyphenisms and specialized cells to house endosymbionts, that make them an interesting system for studies at the interface of ecology, evolution and development. Here we present a comprehensive characterization of the developmental genes in the pea aphid, Acyrthosiphon pisum, and compare our results to other sequenced insects. We investigated genes involved in fundamental developmental processes such as establishment of the body plan and organogenesis, focusing on transcription factors and components of signalling pathways. We found that most developmental genes were well conserved in the pea aphid, although many lineage‐specific gene duplications and gene losses have occurred in several gene families. In particular, genetic components of transforming growth factor beta (TGFβ) Wnt, JAK/STAT (Janus kinase/signal transducer and activator of transcription) and EGF (Epidermal Growth Factor) pathways appear to have been significantly modified in the pea aphid.


Nature | 2014

Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes

Sofia A. V. Fortunato; Marcin Adamski; Olivia Mendivil Ramos; Sven Leininger; Jing Liu; David E. K. Ferrier; Maja Adamska

Sponges are simple animals with few cell types, but their genomes paradoxically contain a wide variety of developmental transcription factors, including homeobox genes belonging to the Antennapedia (ANTP) class, which in bilaterians encompass Hox, ParaHox and NK genes. In the genome of the demosponge Amphimedon queenslandica, no Hox or ParaHox genes are present, but NK genes are linked in a tight cluster similar to the NK clusters of bilaterians. It has been proposed that Hox and ParaHox genes originated from NK cluster genes after divergence of sponges from the lineage leading to cnidarians and bilaterians. On the other hand, synteny analysis lends support to the notion that the absence of Hox and ParaHox genes in Amphimedon is a result of secondary loss (the ghost locus hypothesis). Here we analysed complete suites of ANTP-class homeoboxes in two calcareous sponges, Sycon ciliatum and Leucosolenia complicata. Our phylogenetic analyses demonstrate that these calcisponges possess orthologues of bilaterian NK genes (Hex, Hmx and Msx), a varying number of additional NK genes and one ParaHox gene, Cdx. Despite the generation of scaffolds spanning multiple genes, we find no evidence of clustering of Sycon NK genes. All Sycon ANTP-class genes are developmentally expressed, with patterns suggesting their involvement in cell type specification in embryos and adults, metamorphosis and body plan patterning. These results demonstrate that ParaHox genes predate the origin of sponges, thus confirming the ghost locus hypothesis, and highlight the need to analyse the genomes of multiple sponge lineages to obtain a complete picture of the ancestral composition of the first animal genome.

Collaboration


Dive into the David E. K. Ferrier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Nylk

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Detlev Arendt

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Reka Szabo

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar

Zhengyi Yang

University of St Andrews

View shared research outputs
Researchain Logo
Decentralizing Knowledge