Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter W. H. Holland is active.

Publication


Featured researches published by Peter W. H. Holland.


Nature | 2008

The amphioxus genome and the evolution of the chordate karyotype.

Nicholas H. Putnam; Thomas Butts; David E. K. Ferrier; Rebecca F. Furlong; Uffe Hellsten; Takeshi Kawashima; Marc Robinson-Rechavi; Eiichi Shoguchi; Astrid Terry; Jr-Kai Yu; E grave; lia Benito-Gutiérrez; Inna Dubchak; Jordi Garcia-Fernàndez; Jeremy J. Gibson-Brown; Igor V. Grigoriev; Amy C. Horton; Pieter J. de Jong; Jerzy Jurka; Vladimir V. Kapitonov; Yuji Kohara; Yoko Kuroki; Erika Lindquist; Susan Lucas; Kazutoyo Osoegawa; Len A. Pennacchio; Asaf Salamov; Yutaka Satou; Tatjana Sauka-Spengler; Jeremy Schmutz

Lancelets (‘amphioxus’) are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic ∼520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.


Nature | 2012

The oyster genome reveals stress adaptation and complexity of shell formation

Guofan Zhang; Xiaodong Fang; Ximing Guo; Li Li; Ruibang Luo; Fei Xu; Pengcheng Yang; Linlin Zhang; Xiaotong Wang; Haigang Qi; Zhiqiang Xiong; Huayong Que; Yinlong Xie; Peter W. H. Holland; Jordi Paps; Yabing Zhu; Fucun Wu; Yuanxin Chen; Jiafeng Wang; Chunfang Peng; Jie Meng; Lan Yang; Jun Liu; Bo Wen; Na Zhang; Zhiyong Huang; Qihui Zhu; Yue Feng; Andrew Mount; Dennis Hedgecock

The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster’s adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.


Nature | 2012

Butterfly genome reveals promiscuous exchange of mimicry adaptations among species

Kanchon K. Dasmahapatra; James R. Walters; Adriana D. Briscoe; John W. Davey; Annabel Whibley; Nicola J. Nadeau; Aleksey V. Zimin; Daniel S.T. Hughes; Laura Ferguson; Simon H. Martin; Camilo Salazar; James J. Lewis; Sebastian Adler; Seung-Joon Ahn; Dean A. Baker; Simon W. Baxter; Nicola Chamberlain; Ritika Chauhan; Brian A. Counterman; Tamas Dalmay; Lawrence E. Gilbert; Karl H.J. Gordon; David G. Heckel; Heather M. Hines; Katharina Hoff; Peter W. H. Holland; Emmanuelle Jacquin-Joly; Francis M. Jiggins; Robert T. Jones; Durrell D. Kapan

The evolutionary importance of hybridization and introgression has long been debated. Hybrids are usually rare and unfit, but even infrequent hybridization can aid adaptation by transferring beneficial traits between species. Here we use genomic tools to investigate introgression in Heliconius, a rapidly radiating genus of neotropical butterflies widely used in studies of ecology, behaviour, mimicry and speciation. We sequenced the genome of Heliconius melpomene and compared it with other taxa to investigate chromosomal evolution in Lepidoptera and gene flow among multiple Heliconius species and races. Among 12,669 predicted genes, biologically important expansions of families of chemosensory and Hox genes are particularly noteworthy. Chromosomal organization has remained broadly conserved since the Cretaceous period, when butterflies split from the Bombyx (silkmoth) lineage. Using genomic resequencing, we show hybrid exchange of genes between three co-mimics, Heliconius melpomene, Heliconius timareta and Heliconius elevatus, especially at two genomic regions that control mimicry pattern. We infer that closely related Heliconius species exchange protective colour-pattern genes promiscuously, implying that hybridization has an important role in adaptive radiation.


Trends in Ecology and Evolution | 2000

Rare genomic changes as a tool for phylogenetics

Antonis Rokas; Peter W. H. Holland

DNA sequence data have offered valuable insights into the relationships between living organisms. However, most phylogenetic analyses of DNA sequences rely primarily on single nucleotide substitutions, which might not be perfect phylogenetic markers. Rare genomic changes (RGCs), such as intron indels, retroposon integrations, signature sequences, mitochondrial and chloroplast gene order changes, gene duplications and genetic code changes, provide a suite of complementary markers with enormous potential for molecular systematics. Recent exploitation of RGCs has already started to yield exciting phylogenetic information.


Genome Research | 2008

The amphioxus genome illuminates vertebrate origins and cephalochordate biology

Linda Z. Holland; Ricard Albalat; Kaoru Azumi; Èlia Benito-Gutiérrez; Matthew J. Blow; Marianne Bronner-Fraser; Frédéric Brunet; Thomas Butts; Simona Candiani; Larry J. Dishaw; David E. K. Ferrier; Jordi Garcia-Fernàndez; Jeremy J. Gibson-Brown; Carmela Gissi; Adam Godzik; Finn Hallböök; Dan Hirose; Kazuyoshi Hosomichi; Tetsuro Ikuta; Hidetoshi Inoko; Masanori Kasahara; Jun Kasamatsu; Takeshi Kawashima; Ayuko Kimura; Masaaki Kobayashi; Zbynek Kozmik; Kaoru Kubokawa; Vincent Laudet; Gary W. Litman; Alice C. McHardy

Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development, nuclear receptor genes, genes encoding components of the endocrine and immune systems, and conserved cis-regulatory enhancers. The amphioxus genome contains a basic set of chordate genes involved in development and cell signaling, including a fifteenth Hox gene. This set includes many genes that were co-opted in vertebrates for new roles in neural crest development and adaptive immunity. However, where amphioxus has a single gene, vertebrates often have two, three, or four paralogs derived from two whole-genome duplication events. In addition, several transcriptional enhancers are conserved between amphioxus and vertebrates--a very wide phylogenetic distance. In contrast, urochordate genomes have lost many genes, including a diversity of homeobox families and genes involved in steroid hormone function. The amphioxus genome also exhibits derived features, including duplications of opsins and genes proposed to function in innate immunity and endocrine systems. Our results indicate that the amphioxus genome is elemental to an understanding of the biology and evolution of nonchordate deuterostomes, invertebrate chordates, and vertebrates.


Nature | 1998

The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster

Nina M. Brooke; Jordi Garcia-Fernàndez; Peter W. H. Holland

Genes of the Hox cluster are restricted to the animal kingdom and play a central role in axial patterning in divergent animal phyla. Despite its evolutionary and developmental significance, the origin of the Hox gene cluster is obscure. The consensus is that a primordial Hox cluster arose by tandem gene duplication close to animal origins. Several homeobox genes with high sequence identity to Hox genes are found outside the Hox cluster and are known as ‘dispersed’ Hox-like genes; these genes may have been transposed away from an expanding cluster. Here we show that three of these dispersed homeobox genes form a novel gene cluster in the cephalochordate amphioxus. We argue that this ‘ParaHox’ gene cluster is an ancient paralogue (evolutionary sister) of the Hox gene cluster; the two gene clusters arose by duplication of a ProtoHox gene cluster. Furthermore, we show that amphioxus ParaHox genes have co-linear developmental expression patterns in anterior, middle and posterior tissues. We propose that the origin of distinct Hox and ParaHox genes by gene-cluster duplication facilitated an increase in body complexity during the Cambrian explosion.


Nature | 2013

The genomes of four tapeworm species reveal adaptations to parasitism.

Isheng J. Tsai; Magdalena Zarowiecki; Nancy Holroyd; Alejandro Garciarrubio; Alejandro Sanchez-Flores; Karen Brooks; Alan Tracey; Raúl J. Bobes; Gladis Fragoso; Edda Sciutto; Martin Aslett; Helen Beasley; Hayley M. Bennett; Jianping Cai; Federico Camicia; Richard M. Clark; Marcela Cucher; Nishadi De Silva; Tim A. Day; Peter Deplazes; Karel Estrada; Cecilia Fernández; Peter W. H. Holland; Junling Hou; Songnian Hu; Thomas Huckvale; Stacy S. Hung; Laura Kamenetzky; Jacqueline A. Keane; Ferenc Kiss

Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.


Experimental Neurology | 2008

Local field potential beta activity in the subthalamic nucleus of patients with Parkinson's disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation.

Nicola Ray; Ned Jenkinson; Shouyan Wang; Peter W. H. Holland; John-Stuart Brittain; Carole Joint; John F. Stein; Tipu Z. Aziz

Parkinsons disease is treated pharmacologically with dopamine replacement medication and, more recently, by stimulating basal-ganglia nuclei such as the subthalamic nucleus (STN). Depth recordings after this procedure have revealed excessive activity at frequencies between 8 and 35 Hz (Brown et al., 2001; Kuhn et al., 2004; Priori et al., 2004) that are reduced by dopamine therapy in tandem with improvements in bradykinesia/rigidity, but not tremor (Kuhn et al., 2006). It has also been shown that improvements in motor symptoms after dopamine correlate with single unit activity in the beta range (Weinberger et al., 2006). We recorded local field potentials (LFPs) from the subthalamic nucleus of patients with Parkinsons disease (PD) after surgery to implant deep brain stimulating electrodes while they were on and off dopaminergic medication. As well as replicating Kuhn et al., using the same patients we were able to extend Weinberger et al. to show that LFP beta oscillatory activity correlated with the degree of improvement in bradykinesia/rigidity, but not tremor, after dopamine medication. We also found that the power of beta oscillatory activity uniquely predicted improvements in bradykinesia/rigidity, but again not tremor, after stimulation of the STN in a regression analysis. However improvements after STN stimulation related inversely to beta power, possibly reflecting the accuracy of the electrode placement and/or the limits of STN stimulation in patients with the greatest levels of beta oscillatory activity.


Nature Genetics | 2016

The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons

Ingo Braasch; Andrew R. Gehrke; Jeramiah J. Smith; Kazuhiko Kawasaki; Tereza Manousaki; Jeremy Pasquier; Angel Amores; Thomas Desvignes; Peter Batzel; Julian M. Catchen; Aaron M. Berlin; Michael S. Campbell; Daniel Barrell; Kyle J Martin; John F. Mulley; Vydianathan Ravi; Alison P. Lee; Tetsuya Nakamura; Domitille Chalopin; Shaohua Fan; Dustin J. Wcisel; Cristian Cañestro; Jason Sydes; Felix E G Beaudry; Yi Sun; Jana Hertel; Michael J Beam; Mario Fasold; Mikio Ishiyama; Jeremy Johnson

To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.


Evolution & Development | 2000

The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14

David E. K. Ferrier; Carolina Minguillón; Peter W. H. Holland; Jordi Garcia-Fernàndez

SUMMARY The amphioxus (Branchiostoma floridae) Hox cluster is a model for the ancestral vertebrate cluster, prior to the hypothesized genome‐wide duplications that may have facilitated the evolution of the vertebrate body plan. Here we describe the posterior (5′) genes of the amphioxus cluster, and report the isolation of four new homeobox genes. Vertebrates possess 13 types of Hox gene (paralogy groups), but we show that amphioxus possesses more than 13 Hox genes. Amphioxus is now the first animal in which a Hox14 gene has been found. Our mapping and phylogenetic analysis of amphioxus “Posterior Class” Hox genes reveals that these genes are evolving at a faster rate in deuterostomes than in protostomes, a phenomenon we term Posterior Flexibility.

Collaboration


Dive into the Peter W. H. Holland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge