David E. Mortenson
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David E. Mortenson.
Journal of the American Chemical Society | 2010
Oscar R. Miranda; Hung-Ting Chen; Chang-Cheng You; David E. Mortenson; Xiaochao Yang; Uwe H. F. Bunz; Vincent M. Rotello
We have developed an enzyme-nanoparticle sensor array where the sensitivity is amplified through enzymatic catalysis. In this approach cationic gold nanoparticles are electrostatically bound to an enzyme (beta-galactosidase, beta-Gal), inhibiting enzyme activity. Analyte proteins release the beta-Gal, restoring activity and providing an amplified readout of the binding event. Using this strategy we have been able to identify proteins in buffer at a concentration of 1 nM, substantially lower than current strategies for array-based protein sensing. Moreover, we have obtained identical sensitivity in studies where the proteins are spiked into the complex protein matrix provided by desalted human urine ( approximately 1.5 muM total protein; spiked protein concentrations were 0.067% of the overall protein concentration), demonstrating the potential of the method for diagnostic applications.
Journal of the American Chemical Society | 2012
Lisa M. Johnson; David E. Mortenson; Hyun Gi Yun; W. Seth Horne; Thomas J. Ketas; Min Lu; John P. Moore; Samuel H. Gellman
We report a new method for preorganization of α/β-peptide helices, based on the use of a dense array of acidic and basic side chains. Previously we have used cyclically constrained β residues to promote α/β-peptide helicity; here we show that an engineered ion pair array can be comparably effective, as indicated by mimicry of the CHR domain of HIV protein gp41. The new design is effective in biochemical and cell-based infectivity assays; however, the resulting α/β-peptide is susceptible to proteolysis. This susceptibility was addressed via introduction of a few cyclic β residues near the cleavage site, to produce the most stable, effective α/β-peptide gp41 CHR analogue identified. Crystal structures of an α- and α/β-peptide (each involved in a gp41-mimetic helix bundle) that contain the dense acid/base residue array manifest disorder in the ionic side chains, but there is little side-chain disorder in analogous α- and α/β-peptide structures with a sparser ionic side-chain array. These observations suggest that dense arrays of complementary acidic and basic residues can provide conformational stabilization via Coulombic attractions that do not require entropically costly ordering of side chains.
Journal of the American Chemical Society | 2012
David E. Mortenson; Kenneth A. Satyshur; Ilia A. Guzei; Katrina T. Forest; Samuel H. Gellman
Quasiracemic crystallization has been used to obtain high-resolution structures of two variants of the villin headpiece subdomain (VHP) that contain a pentafluorophenylalanine (F(5)Phe) residue in the hydrophobic core. In each case, the crystal contained the variant constructed from l-amino acids and the native sequence constructed from d-amino acids. We were motivated to undertake these studies by reports that racemic proteins crystallize more readily than homochiral forms and the prospect that quasiracemic crystallization would enable us to determine whether a polypeptide containing a noncanonical residue can closely mimic the tertiary structure of the native sequence. The results suggest that quasiracemic crystallization may prove to be generally useful for assessing mimicry of naturally evolved protein folding patterns by polypeptides that contain unnatural side-chain or backbone subunits.
Journal of the American Chemical Society | 2016
Wentao Chen; Jiajia Dong; Lars Plate; David E. Mortenson; Gabriel J. Brighty; Suhua Li; Yu Liu; Andrea Galmozzi; Peter S. Lee; Jonathan J. Hulce; Benjamin F. Cravatt; Enrique Saez; Evan T. Powers; Ian A. Wilson; K. Barry Sharpless; Jeffery W. Kelly
Arylfluorosulfates have appeared only rarely in the literature and have not been explored as probes for covalent conjugation to proteins, possibly because they were assumed to possess high reactivity, as with other sulfur(VI) halides. However, we find that arylfluorosulfates become reactive only under certain circumstances, e.g., when fluoride displacement by a nucleophile is facilitated. Herein, we explore the reactivity of structurally simple arylfluorosulfates toward the proteome of human cells. We demonstrate that the protein reactivity of arylfluorosulfates is lower than that of the corresponding aryl sulfonyl fluorides, which are better characterized with regard to proteome reactivity. We discovered that simple hydrophobic arylfluorosulfates selectively react with a few members of the intracellular lipid binding protein (iLBP) family. A central function of iLBPs is to deliver small-molecule ligands to nuclear hormone receptors. Arylfluorosulfate probe 1 reacts with a conserved tyrosine residue in the ligand-binding site of a subset of iLBPs. Arylfluorosulfate probes 3 and 4, featuring a biphenyl core, very selectively and efficiently modify cellular retinoic acid binding protein 2 (CRABP2), both in vitro and in living cells. The X-ray crystal structure of the CRABP2-4 conjugate, when considered together with binding site mutagenesis experiments, provides insight into how CRABP2 might activate arylfluorosulfates toward site-specific reaction. Treatment of breast cancer cells with probe 4 attenuates nuclear hormone receptor activity mediated by retinoic acid, an endogenous client lipid of CRABP2. Our findings demonstrate that arylfluorosulfates can selectively target single iLBPs, making them useful for understanding iLBP function.
Journal of the American Chemical Society | 2013
Young-Hee Shin; David E. Mortenson; Kenneth A. Satyshur; Katrina T. Forest; Samuel H. Gellman
Cyclic constraints have proven to be very effective for preorganizing β-amino acid residues and thereby stabilizing β- and α/β-peptide helices, but little is known about possible preorganization effects among γ residues. Here we assess and compare the impact of cyclic preorganization of β and γ residues in the context of a specific α/β/γ-peptide helix. The results show that β residue preorganization is critical for helix stability but that γ residue preorganization is less important.
Journal of the American Chemical Society | 2013
Zvi Hayouka; David E. Mortenson; Dale F. Kreitler; Bernard Weisblum; Katrina T. Forest; Samuel H. Gellman
High-resolution structure elucidation has been challenging for the large group of host-defense peptides that form helices on or within membranes but do not manifest a strong folding propensity in aqueous solution. Here we report the crystal structure of an analogue of the widely studied host-defense peptide magainin 2. Magainin 2 (S8A, G13A, G18A) is a designed variant that displays enhanced antibacterial activity relative to the natural peptide. The crystal structure of magainin 2 (S8A, G13A, G18A), obtained for the racemic form, features a dimerization mode that has previously been proposed to play a role in the antibacterial activity of magainin 2 and related peptides.
Proceedings of the National Academy of Sciences of the United States of America | 2015
David E. Mortenson; Jay D. Steinkruger; Dale F. Kreitler; Dominic V. Perroni; Gregory P. Sorenson; Lijun Huang; Ritesh Mittal; Hyun Gi Yun; Benjamin Travis; Mahesh K. Mahanthappa; Katrina T. Forest; Samuel H. Gellman
Significance d polypeptides represent an attractive platform for biomedical applications because of their resistance to proteolytic degradation. However, the structural principles that underlie associations between L- and D-protein partners remain poorly understood because there has been very little atomic-resolution structural characterization of such heterochiral assemblies. Here we report two X-ray crystal structures of the racemic form of an α-helical peptide derived from the influenza M2 protein. Both structures contain large heterochiral coiled–coil interfaces. The ubiquity and regularity of coiled coils has inspired extensive design effort directed toward homochiral tertiary and quaternary structures, and we anticipate that the insights from these crystal structures will facilitate the design of an analogous rich set of heterochiral proteins and assemblies. Interactions between polypeptide chains containing amino acid residues with opposite absolute configurations have long been a source of interest and speculation, but there is very little structural information for such heterochiral associations. The need to address this lacuna has grown in recent years because of increasing interest in the use of peptides generated from d amino acids (d peptides) as specific ligands for natural proteins, e.g., to inhibit deleterious protein–protein interactions. Coiled–coil interactions, between or among α-helices, represent the most common tertiary and quaternary packing motif in proteins. Heterochiral coiled–coil interactions were predicted over 50 years ago by Crick, and limited experimental data obtained in solution suggest that such interactions can indeed occur. To address the dearth of atomic-level structural characterization of heterochiral helix pairings, we report two independent crystal structures that elucidate coiled-coil packing between l- and d-peptide helices. Both structures resulted from racemic crystallization of a peptide corresponding to the transmembrane segment of the influenza M2 protein. Networks of canonical knobs-into-holes side-chain packing interactions are observed at each helical interface. However, the underlying patterns for these heterochiral coiled coils seem to deviate from the heptad sequence repeat that is characteristic of most homochiral analogs, with an apparent preference for a hendecad repeat pattern.
Journal of the American Chemical Society | 2016
Che-Hsiung Hsu; Sangho Park; David E. Mortenson; B. Lachele Foley; Xiaocong Wang; Robert J. Woods; David A. Case; Evan T. Powers; Chi-Huey Wong; H. Jane Dyson; Jeffery W. Kelly
Interactions between proteins and carbohydrates are ubiquitous in biology. Therefore, understanding the factors that determine their affinity and selectivity are correspondingly important. Herein, we have determined the relative strengths of intramolecular interactions between a series of monosaccharides and an aromatic ring close to the glycosylation site in an N-glycoprotein host. We employed the enhanced aromatic sequon, a structural motif found in the reverse turns of some N-glycoproteins, to facilitate face-to-face monosaccharide-aromatic interactions. A protein host was used because the dependence of the folding energetics on the identity of the monosaccharide can be accurately measured to assess the strength of the carbohydrate-aromatic interaction. Our data demonstrate that the carbohydrate-aromatic interaction strengths are moderately affected by changes in the stereochemistry and identity of the substituents on the pyranose rings of the sugars. Galactose seems to make the weakest and allose the strongest sugar-aromatic interactions, with glucose, N-acetylglucosamine (GlcNAc) and mannose in between. The NMR solution structures of several of the monosaccharide-containing N-glycoproteins were solved to further understand the origins of the similarities and differences between the monosaccharide-aromatic interaction energies. Peracetylation of the monosaccharides substantially increases the strength of the sugar-aromatic interaction in the context of our N-glycoprotein host. Finally, we discuss our results in light of recent literature regarding the contribution of electrostatics to CH-π interactions and speculate on what our observations imply about the absolute conservation of GlcNAc as the monosaccharide through which N-linked glycans are attached to glycoproteins in eukaryotes.
Acta Crystallographica Section D-biological Crystallography | 2013
David E. Mortenson; Dale F. Kreitler; Hyun Gi Yun; Samuel H. Gellman; Katrina T. Forest
The human Pin1 WW domain is a small autonomously folding protein that has been useful as a model system for biophysical studies of β-sheet folding. This domain has resisted previous attempts at crystallization for X-ray diffraction studies, perhaps because of intrinsic conformational flexibility that interferes with the formation of a crystal lattice. Here, the crystal structure of the human Pin1 WW domain has been obtained via racemic crystallization in the presence of small-molecule additives. Both enantiomers of a 36-residue variant of the Pin1 WW domain were synthesized chemically, and the L- and D-polypeptides were combined to afford diffracting crystals. The structural data revealed packing interactions of small carboxylic acids, either achiral citrate or a D,L mixture of malic acid, with a mobile loop region of the WW-domain fold. These interactions with solution additives may explain our success in crystallization of this protein racemate. Molecular-dynamics simulations starting from the structure of the Pin1 WW domain suggest that the crystal structure closely resembles the conformation of this domain in solution. The structural data presented here should provide a basis for further studies of this important model system.
ChemBioChem | 2018
David E. Mortenson; Dale F. Kreitler; Nicole C. Thomas; Ilia A. Guzei; Samuel H. Gellman; Katrina T. Forest
β‐Amino acids have a backbone that is expanded by one carbon atom relative to α‐amino acids, and β residues have been investigated as subunits in protein‐like molecules that adopt discrete and predictable conformations. Two classes of β residue have been widely explored in the context of generating α‐helix‐like conformations: β3‐amino acids, which are homologous to α‐amino acids and bear a side chain on the backbone carbon adjacent to nitrogen, and residues constrained by a five‐membered ring, such the one derived from trans‐2‐aminocyclopentanecarboxylic acid (ACPC). Substitution of α residues with their β3 homologues within an α‐helix‐forming sequence generally causes a decrease in conformational stability. Use of a ring‐constrained β residue, however, can offset the destabilizing effect of α→β substitution. Here we extend the study of α→β substitutions, involving both β3 and ACPC residues, to short loops within a small tertiary motif. We start from previously reported variants of the Pin1 WW domain that contain a two‐, three‐, or four‐residue β‐hairpin loop, and we evaluate α→β replacements at each loop position for each variant. By referral to the ϕ,ψ angles of the native structure, one can choose a stereochemically appropriate ACPC residue. Use of such logically chosen ACPC residues enhances conformational stability in several cases. Crystal structures of three β‐containing Pin1 WW domain variants show that a native‐like tertiary structure is maintained in each case.