David E. Thompson
Sam Houston State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David E. Thompson.
wjm | 2015
Ilona Petrikovics; Marianna Budai; Kristof Kovacs; David E. Thompson
This paper reviews milestones in antidotal therapies for cyanide (CN) spanning early remedies, current antidotal systems and research towards next generation therapies. CN has been a part of plant defense mechanisms for millions of years. It became industrially important in the nineteenth century with the advent of CN assisted gold mining and the use of CN as a pest control agent. The biochemical basis of CN poisoning was actively studied and key mechanisms were understood as early as 1929. These fundamental studies led to a variety of antidotes, including indirect CN binders that generate methemoglobin, direct CN binders such as hydroxocobalamin, and sulfur donors that convert CN to the less toxic thiocyanate. Research on blood gases at the end of the twentieth century shed new light on the role of nitric oxide (NO) in the body. The discovery of NOs ability to compete with CN for enzymatic binding sites provided a previously missed explanation for the rapid efficacy of NO generating antidotes such as the nitrites. Presently used CN therapies include: methemoglobin/NO generators (e.g., sodium nitrite, amyl nitrite, and dimethyl aminophenol), sulfur donors (e.g., sodium thiosulfate and glutathione), and direct binding agents [(e.g., hydroxocobalamin and dicobalt salt of ethylenediaminetetraacetic acid (dicobalt edetate)]. A strong effort is being made to explore novel antidotal systems and to formulate them for rapid administration at the point of intoxication in mass casualty scenarios. New antidotes, formulations, and delivery systems are enhancing bioavailability and efficacy and hold promise for a new generation of improved CN countermeasures.
Toxicology and Industrial Health | 2016
Gary A. Rockwood; David E. Thompson; Ilona Petrikovics
In the present studies, the in vitro and in vivo efficacies of a novel cyanide countermeasure, dimethyl trisulfide (DMTS), were evaluated. DMTS is a sulfur-based molecule found in garlic, onion, broccoli, and similar plants. DMTS was studied for effectiveness as a sulfur donor-type cyanide countermeasure. The sulfur donor reactivity of DMTS was determined by measuring the rate of the formation of the cyanide metabolite thiocyanate. In experiments carried out in vitro in the presence of the sulfurtransferase rhodanese (Rh) and at the experimental pH of 7.4, DMTS was observed to convert cyanide to thiocyanate with greater than 40 times higher efficacy than does thiosulfate, the sulfur donor component of the US Food and Drug Administration-approved cyanide countermeasure Nithiodote®. In the absence of Rh, DMTS was observed to be almost 80 times more efficient than sodium thiosulfate in vitro. The fact that DMTS converts cyanide to thiocyanate more efficiently than does thiosulfate both with and without Rh makes it a promising sulfur donor-type cyanide antidote (scavenger) with reduced enzyme dependence in vitro. The therapeutic cyanide antidotal efficacies for DMTS versus sodium thiosulfate were measured following intramuscular administration in a mouse model and expressed as antidotal potency ratios (APR = LD50 of cyanide with antidote/LD50 of cyanide without antidote). A dose of 100 mg/kg sodium thiosulfate given intramuscularly showed only slight therapeutic protection (APR = 1.1), whereas the antidotal protection from DMTS given intramuscularly at the same dose was substantial (APR = 3.3). Based on these data, DMTS will be studied further as a promising next-generation countermeasure for cyanide intoxication.
Journal of Analytical Toxicology | 2014
Raj K. Bhandari; Robert P. Oda; Ilona Petrikovics; David E. Thompson; Matthew Brenner; Sari Mahon; Vikhyat S. Bebarta; Gary A. Rockwood; Brian A. Logue
Cyanide causes toxic effects by inhibiting cytochrome c oxidase, resulting in cellular hypoxia and cytotoxic anoxia, and can eventually lead to death. Cyanide exposure can be verified by direct analysis of cyanide concentrations or analyzing its metabolites, including thiocyanate (SCN(-)) and 2-amino-2-thiazoline-4-carboxylic acid (ATCA) in blood. To determine the behavior of these markers following cyanide exposure, a toxicokinetics study was performed in three animal models: (i) rats (250-300 g), (ii) rabbits (3.5-4.2 kg) and (iii) swine (47-54 kg). Cyanide reached a maximum in blood and declined rapidly in each animal model as it was absorbed, distributed, metabolized and eliminated. Thiocyanate concentrations rose more slowly as cyanide was enzymatically converted to SCN(-). Concentrations of ATCA did not rise significantly above the baseline in the rat model, but rose quickly in rabbits (up to a 40-fold increase) and swine (up to a 3-fold increase) and then fell rapidly, generally following the relative behavior of cyanide. Rats were administered cyanide subcutaneously and the apparent half-life (t1/2) was determined to be 1,510 min. Rabbits were administered cyanide intravenously and the t1/2 was determined to be 177 min. Swine were administered cyanide intravenously and the t1/2 was determined to be 26.9 min. The SCN(-) t1/2 in rats was 3,010 min, but was not calculated in rabbits and swine because SCN(-) concentrations did not reach a maximum. The t1/2 of ATCA was 40.7 and 13.9 min in rabbits and swine, respectively, while it could not be determined in rats with confidence. The current study suggests that cyanide exposure may be verified shortly after exposure by determining significantly elevated cyanide and SCN(-) in each animal model and ATCA may be used when the ATCA detoxification pathway is significant.
Journal of Chromatography B | 2012
Ilona Petrikovics; Jorn C.C. Yu; David E. Thompson; Prashanth Jayanna; Brian A. Logue; Jessica Nasr; Raj K. Bhandari; Steven I. Baskin; Gary A. Rockwood
2-Aminothiazoline-4-carboxylic acid (ATCA) was intravenously injected to rats in order to investigate its plasma distribution. ATCA was extracted from plasma samples by solid phase extraction (SPE) and molecularly imprinted polymer stir bar sorption extraction (MIP-SBSE). Detection and quantification of ATCA were achieved by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). It was found that the intravenously injected ATCA concentration quickly decreased to half within 2.5h in the rat system. However, after 2.5 h, the concentration of ATCA in plasma stayed constant at least 5 folds above the endogenous ATCA level for more then 48 h. This finding can be used for evaluating ATCAs diagnostic and forensic value as a biomarker for cyanide exposure.
Biomarkers | 2011
Ilona Petrikovics; David E. Thompson; Gary A. Rockwood; Brian A. Logue; Sarah Martin; Prashanth Jayanna; Jorn C.C. Yu
The reaction of cyanide (CN−) with cystine to produce 2-aminothiazoline-4-carboxylic acid (ATCA) is one of the independent detoxification pathways of cyanide in biological systems. In this report, in vivo production of ATCA and its distributions in plasma and organs were studied after a subcutaneous sublethal dose of 4 mg/kg body weight potassium cyanide (KCN) administration to rats. At this sublethal dose of KCN, ATCA concentration was not significantly increased in the plasma samples, however, it was found significantly increased in liver samples. These results suggested that ATCA might not be a good diagnostic biomarker in plasma for sublethal cyanide exposure; however, liver could serve as the right organ for the detection of ATCA in post-mortem examinations involving cyanide exposure in military, firefighting, industrial and forensic settings.
wjm | 2012
Jorn Cc Yu; Sarah Martin; Jessica Nasr; Katelyn Stafford; David E. Thompson; Ilona Petrikovics
AIM To demonstrate the potential of using 2-aminothiazoline-4-carboxylic acid (ATCA) as a novel biomarker/forensic biomarker for cyanide poisoning. METHODS A sensitive method was developed and employed for the identification and quantification of ATCA in biological samples, where the sample extraction and clean up were achieved by solid phase extraction (SPE). After optimization of SPE procedures, ATCA was analyzed by high performance liquid chromatography-tandem mass spectrometry. ATCA levels following the administration of different doses of potassium cyanide (KCN) to mice were measured and compared to endogenous ATCA levels in order to study the significance of using ATCA as a biomarker for cyanide poisoning. RESULTS A custom made analytical method was established for a new (mice) model when animals were exposed to increasing KCN doses. The application of this method provided important new information on ATCA as a potential cyanide biomarker. ATCA concentration in mice plasma samples were increased from 189 ± 28 ng/mL (n = 3) to 413 ± 66 ng/mL (n = 3) following a 10 mg/kg body weight dose of KCN introduced subcutaneously. The sensitivity of this analytical method proved to be a tool for measuring endogenous level of ATCA in mice organs as follows: 1.2 ± 0.1 μg/g for kidney samples, 1.6 ± 0.1 μg/g for brain samples, 1.8 ± 0.2 μg/g for lung samples, 2.9 ± 0.1 μg/g for heart samples, and 3.6 ± 0.9 μg/g for liver samples. CONCLUSION This finding suggests that ATCA has the potential to serve as a plasma biomarker / forensic biomarker for cyanide poisoning.
Journal of Chromatography B | 2017
Lóránd Kiss; Secondra Holmes; Ching-En Chou; Xinmei Dong; James Ross; Denise Brown; Brooke Mendenhall; Valerie Coronado; Deepthika De Silva; Gary A. Rockwood; Ilona Petrikovics; David E. Thompson
The antidotal potency of dimethyl trisulfide (DMTS) against cyanide poisoning was discovered and investigated in our previous studies. Based on our results it has better efficacy than the Cyanokit and the Nithiodote therapies that are presently used against cyanide intoxication in the US. Because of their absence in the literature, the goal of this work was to develop analytical methods for determining DMTS from blood and brain that could be employed in future pharmacokinetic studies. An HPLC-UV method for detection of DMTS from blood, a GC-MS method for detection of DMTS from brain, and associated validation experiments are described here. These analytical methods were developed using in vitro spiking of brain and blood, and are suitable for determining the in vivo DMTS concentrations in blood and brain in future pharmacokinetic and distribution studies. An important phenomenon was observed in the process of developing these methods. Specifically, recoveries from fresh blood spiked with DMTS were found to be significantly lower than recoveries from aged blood spiked in the same manner with DMTS. This decreased DMTS recovery from fresh blood is important, both because of the role it may play in the antidotal action of DMTS in the presence of cyanide, and because it adds the requirement of sample stabilization to the method development process. Mitigation procedures for stabilizing DMTS samples in blood are reported.
Toxicological Sciences | 2017
Lóránd Kiss; Alexandra Bocsik; Fruzsina R. Walter; James Ross; Denise Brown; Brooke Mendenhall; Sarah R Crews; Jana Lowry; Valerie Coronado; David E. Thompson; Péter Sipos; Piroska Szabó-Révész; Mária A. Deli; Ilona Petrikovics
Recent in vitro and in vivo studies highlight the strong potential of dimethyl trisulfide (DMTS) as an antidote for cyanide (CN) intoxication. Due to its high oxygen demand, the brain is one of the main target organs of CN. The blood-brain barrier (BBB) regulates the uptake of molecules into the brain. In the literature, there is no data about the ability of DMTS to penetrate the BBB. Therefore, our aim was to test the in vitro BBB penetration of DMTS and its in vivo pharmacokinetics in blood and brain. The in vitro BBB penetration of DMTS was measured by using a parallel artificial membrane permeability assay (BBB-PAMPA), and a triple BBB co-culture model. The pharmacokinetics was investigated in a mouse model by following the DMTS concentration in blood and brain at regular time intervals following intramuscular administration. DMTS showed high penetrability in both in vitro systems (apparent permeability coefficients: BBB-PAMPA 11.8 × 10-6 cm/s; cell culture 158 × 10-6 cm/s) without causing cell toxicity and leaving the cellular barrier intact. DMTS immediately absorbed into the blood after the intramuscular injection (5 min), and rapidly penetrated the brain of mice (10 min). In addition to the observed passive diffusion in the in vitro studies, the contribution of facilitated and/or active transport to the measured high permeability of DMTS in the pharmacokinetic studies can be hypothesized. Earlier investigations demonstrating the antidotal efficacy of DMTS against CN together with the present results highlight the promise of DMTS as a brain-protective CN antidote.
Drugs in R & D | 2018
Lóránd Kiss; Anna Duke; Kristof Kovacs; Tibor Barcza; Márton Kiss; Ilona Petrikovics; David E. Thompson
BackgroundDimethyl trisulfide (DMTS) is a highly lipid-soluble cyanide (CN) antidote candidate molecule. In prior studies with various US FDA-approved co-solvents, surfactants, and their combinations, aqueous solutions containing 15% polysorbate 80 (Poly80) were found to effectively solubilize DMTS in formulations for intramuscular administration. However, DMTS formulated in 15% aqueous Poly80 solutions showed gradual losses over time when stored in vials with septum-based seals.ObjectiveThe present study tested whether storing DMTS formulations in hermetically sealed glass ampules could mitigate storage losses.MethodsSamples consisted of 1-mL aliquots of a 50 mg/ml stock solution of DMTS in 15% aqueous Poly80. The control samples were stored using a vial-within-a-vial system—the inner and outer vials were sealed respectively, with a snap cap, and with a crimped septum. The hermetically sealed test samples were stored in fire-sealed glass ampules. The DMTS content was measured by HPLC–UV analysis at specific time points over a 100-day period.ResultsWhile the control samples exhibited systematic DMTS losses, no DMTS losses were observed from the test samples stored in hermetically sealed glass ampules over the 100-day testing period.ConclusionDMTS formulated in 15% aqueous Poly80 solution has excellent stability when stored in fire-sealed glass ampules and thus has the potential to be effectively stored as an intramuscular CN countermeasure for mass casualty scenarios.
Toxicology of Cyanides and Cyanogens | 2016
David E. Thompson; Ilona Petrikovics
Collaboration
Dive into the David E. Thompson's collaboration.
United States Army Medical Research Institute of Chemical Defense
View shared research outputs