Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prescott G. Woodruff is active.

Publication


Featured researches published by Prescott G. Woodruff.


The New England Journal of Medicine | 2011

Azithromycin for prevention of exacerbations of COPD.

Richard K. Albert; John E. Connett; William C. Bailey; Richard Casaburi; J. Allen D. Cooper; Gerard J. Criner; Jeffrey L. Curtis; Mark T. Dransfield; MeiLan K. Han; Stephen C. Lazarus; Barry J. Make; Nathaniel Marchetti; Fernando J. Martinez; Nancy E. Madinger; Charlene McEvoy; Dennis E. Niewoehner; Janos Porsasz; Connie S. Price; John J. Reilly; Paul D. Scanlon; Frank C. Sciurba; Steven M. Scharf; George R. Washko; Prescott G. Woodruff; Nicholas R. Anthonisen

BACKGROUND Acute exacerbations adversely affect patients with chronic obstructive pulmonary disease (COPD). Macrolide antibiotics benefit patients with a variety of inflammatory airway diseases. METHODS We performed a randomized trial to determine whether azithromycin decreased the frequency of exacerbations in participants with COPD who had an increased risk of exacerbations but no hearing impairment, resting tachycardia, or apparent risk of prolongation of the corrected QT interval. RESULTS A total of 1577 subjects were screened; 1142 (72%) were randomly assigned to receive azithromycin, at a dose of 250 mg daily (570 participants), or placebo (572 participants) for 1 year in addition to their usual care. The rate of 1-year follow-up was 89% in the azithromycin group and 90% in the placebo group. The median time to the first exacerbation was 266 days (95% confidence interval [CI], 227 to 313) among participants receiving azithromycin, as compared with 174 days (95% CI, 143 to 215) among participants receiving placebo (P<0.001). The frequency of exacerbations was 1.48 exacerbations per patient-year in the azithromycin group, as compared with 1.83 per patient-year in the placebo group (P=0.01), and the hazard ratio for having an acute exacerbation of COPD per patient-year in the azithromycin group was 0.73 (95% CI, 0.63 to 0.84; P<0.001). The scores on the St. Georges Respiratory Questionnaire (on a scale of 0 to 100, with lower scores indicating better functioning) improved more in the azithromycin group than in the placebo group (a mean [±SD] decrease of 2.8±12.8 vs. 0.6±11.4, P=0.004); the percentage of participants with more than the minimal clinically important difference of -4 units was 43% in the azithromycin group, as compared with 36% in the placebo group (P=0.03). Hearing decrements were more common in the azithromycin group than in the placebo group (25% vs. 20%, P=0.04). CONCLUSIONS Among selected subjects with COPD, azithromycin taken daily for 1 year, when added to usual treatment, decreased the frequency of exacerbations and improved quality of life but caused hearing decrements in a small percentage of subjects. Although this intervention could change microbial resistance patterns, the effect of this change is not known. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT00325897.).


Proceedings of the National Academy of Sciences of the United States of America | 2007

Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids

Prescott G. Woodruff; Homer A. Boushey; Gregory Dolganov; Christopher S. Barker; Yee Hwa Yang; Samantha Donnelly; Almut Ellwanger; Sukhvinder S. Sidhu; Trang Dao-Pick; Carlos Pantoja; David J. Erle; Keith R. Yamamoto; John V. Fahy

Airway inflammation and epithelial remodeling are two key features of asthma. IL-13 and other cytokines produced during T helper type 2 cell-driven allergic inflammation contribute to airway epithelial goblet cell metaplasia and may alter epithelial–mesenchymal signaling, leading to increased subepithelial fibrosis or hyperplasia of smooth muscle. The beneficial effects of corticosteroids in asthma could relate to their ability to directly or indirectly decrease epithelial cell activation by inflammatory cells and cytokines. To identify markers of epithelial cell dysfunction and the effects of corticosteroids on epithelial cells in asthma, we studied airway epithelial cells collected from asthmatic subjects enrolled in a randomized controlled trial of inhaled corticosteroids, from healthy subjects and from smokers (disease control). By using gene expression microarrays, we found that chloride channel, calcium-activated, family member 1 (CLCA1), periostin, and serine peptidase inhibitor, clade B (ovalbumin), member 2 (serpinB2) were up-regulated in asthma but not in smokers. Corticosteroid treatment down-regulated expression of these three genes and markedly up-regulated expression of FK506-binding protein 51 (FKBP51). Whereas high baseline expression of CLCA1, periostin, and serpinB2 was associated with a good clinical response to corticosteroids, high expression of FKBP51 was associated with a poor response. By using airway epithelial cells in culture, we found that IL-13 increased expression of CLCA1, periostin, and serpinB2, an effect that was suppressed by corticosteroids. Corticosteroids also induced expression of FKBP51. Taken together, our findings show that airway epithelial cells in asthma have a distinct activation profile and identify direct and cell-autonomous effects of corticosteroid treatment on airway epithelial cells that relate to treatment responses and can now be the focus of specific mechanistic studies.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Roles of epithelial cell-derived periostin in TGF-β activation, collagen production, and collagen gel elasticity in asthma

Sukhvinder S. Sidhu; Shaopeng Yuan; Anh L. Innes; Sheena C. Kerr; Prescott G. Woodruff; Lydia Hou; Susan J. Muller; John V. Fahy

Periostin is considered to be a matricellular protein with expression typically confined to cells of mesenchymal origin. Here, by using in situ hybridization, we show that periostin is specifically up-regulated in bronchial epithelial cells of asthmatic subjects, and in vitro, we show that periostin protein is basally secreted by airway epithelial cells in response to IL-13 to influence epithelial cell function, epithelial–mesenchymal interactions, and extracellular matrix organization. In primary human bronchial epithelial cells stimulated with periostin and epithelial cells overexpressing periostin, we reveal a function for periostin in stimulating the TGF-β signaling pathway in a mechanism involving matrix metalloproteinases 2 and 9. Furthermore, conditioned medium from the epithelial cells overexpressing periostin caused TGF-β–dependent secretion of type 1 collagen by airway fibroblasts. In addition, mixing recombinant periostin with type 1 collagen in solution caused a dramatic increase in the elastic modulus of the collagen gel, indicating that periostin alters collagen fibrillogenesis or cross-linking and leads to stiffening of the matrix. Epithelial cell-derived periostin in asthma has roles in TGF-β activation and collagen gel elasticity in asthma.


Nature | 2014

Muc5b is required for airway defence

Michelle G. Roy; Alessandra Livraghi-Butrico; Ashley A. Fletcher; Melissa M. McElwee; Scott E. Evans; Ryan M. Boerner; Samantha N. Alexander; Lindsey K. Bellinghausen; Alfred S. Song; Youlia Petrova; Michael J. Tuvim; Roberto Adachi; Irlanda Romo; Andrea S. Bordt; M. Gabriela Bowden; Joseph H. Sisson; Prescott G. Woodruff; David J. Thornton; Karine Rousseau; Maria Miguelina De La Garza; Seyed Javad Moghaddam; Harry Karmouty-Quintana; Michael R. Blackburn; Scott M. Drouin; C. William Davis; Kristy A. Terrell; Barbara R. Grubb; Wanda K. O'Neal; Sonia C. Flores; Adela Cota-Gomez

Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b−/− mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.


The New England Journal of Medicine | 2014

Simvastatin for the Prevention of Exacerbations in Moderate-to-Severe COPD

Gerard J. Criner; John E. Connett; Shawn D. Aaron; Richard K. Albert; William C. Bailey; Richard Casaburi; J. A D Cooper; Jeffrey L. Curtis; Mark T. Dransfield; MeiLan K. Han; Barry J. Make; Nathaniel Marchetti; Fernando J. Martinez; Dennis E. Niewoehner; Paul D. Scanlon; Frank C. Sciurba; Steven M. Scharf; Don D. Sin; Helen Voelker; George R. Washko; Prescott G. Woodruff; Stephen C. Lazarus

BACKGROUND Retrospective studies have shown that statins decrease the rate and severity of exacerbations, the rate of hospitalization, and mortality in chronic obstructive pulmonary disease (COPD). We prospectively studied the efficacy of simvastatin in preventing exacerbations in a large, multicenter, randomized trial. METHODS We designed the Prospective Randomized Placebo-Controlled Trial of Simvastatin in the Prevention of COPD Exacerbations (STATCOPE) as a randomized, controlled trial of simvastatin (at a daily dose of 40 mg) versus placebo, with annual exacerbation rates as the primary outcome. Patients were eligible if they were 40 to 80 years of age, had COPD (defined by a forced expiratory volume in 1 second [FEV1] of less than 80% and a ratio of FEV1 to forced vital capacity of less than 70%), and had a smoking history of 10 or more pack-years, were receiving supplemental oxygen or treatment with glucocorticoids or antibiotic agents, or had had an emergency department visit or hospitalization for COPD within the past year. Patients with diabetes or cardiovascular disease and those who were taking statins or who required statins on the basis of Adult Treatment Panel III criteria were excluded. Participants were treated from 12 to 36 months at 45 centers. RESULTS A total of 885 participants with COPD were enrolled for approximately 641 days; 44% of the patients were women. The patients had a mean (±SD) age of 62.2±8.4 years, an FEV1 that was 41.6±17.7% of the predicted value, and a smoking history of 50.6±27.4 pack-years. At the time of study closeout, the low-density lipoprotein cholesterol levels were lower in the simvastatin-treated patients than in those who received placebo. The mean number of exacerbations per person-year was similar in the simvastatin and placebo groups: 1.36±1.61 exacerbations and 1.39±1.73 exacerbations, respectively (P=0.54). The median number of days to the first exacerbation was also similar: 223 days (95% confidence interval [CI], 195 to 275) and 231 days (95% CI, 193 to 303), respectively (P=0.34). The number of nonfatal serious adverse events per person-year was similar, as well: 0.63 events with simvastatin and 0.62 events with placebo. There were 30 deaths in the placebo group and 28 in the simvastatin group (P=0.89). CONCLUSIONS Simvastatin at a daily dose of 40 mg did not affect exacerbation rates or the time to a first exacerbation in patients with COPD who were at high risk for exacerbations. (Funded by the National Heart, Lung, and Blood Institute and the Canadian Institutes of Health Research; STATCOPE ClinicalTrials.gov number, NCT01061671.).


The New England Journal of Medicine | 2016

Clinical Significance of Symptoms in Smokers with Preserved Pulmonary Function

Prescott G. Woodruff; R. Graham Barr; Eugene R. Bleecker; Stephanie A. Christenson; David Couper; Jeffrey L. Curtis; Natalia Gouskova; Nadia N. Hansel; Eric A. Hoffman; Richard E. Kanner; Eric C. Kleerup; Stephen C. Lazarus; Fernando J. Martinez; Robert Paine; Stephen I. Rennard; Donald P. Tashkin; MeiLan K. Han

BACKGROUND Currently, the diagnosis of chronic obstructive pulmonary disease (COPD) requires a ratio of forced expiratory volume in 1 second (FEV1) to forced vital capacity (FVC) of less than 0.70 as assessed by spirometry after bronchodilator use. However, many smokers who do not meet this definition have respiratory symptoms. METHODS We conducted an observational study involving 2736 current or former smokers and controls who had never smoked and measured their respiratory symptoms using the COPD Assessment Test (CAT; scores range from 0 to 40, with higher scores indicating greater severity of symptoms). We examined whether current or former smokers who had preserved pulmonary function as assessed by spirometry (FEV1:FVC ≥0.70 and an FVC above the lower limit of the normal range after bronchodilator use) and had symptoms (CAT score, ≥10) had a higher risk of respiratory exacerbations than current or former smokers with preserved pulmonary function who were asymptomatic (CAT score, <10) and whether those with symptoms had different findings from the asymptomatic group with respect to the 6-minute walk distance, lung function, or high-resolution computed tomographic (HRCT) scan of the chest. RESULTS Respiratory symptoms were present in 50% of current or former smokers with preserved pulmonary function. The mean (±SD) rate of respiratory exacerbations among symptomatic current or former smokers was significantly higher than the rates among asymptomatic current or former smokers and among controls who never smoked (0.27±0.67 vs. 0.08±0.31 and 0.03±0.21 events, respectively, per year; P<0.001 for both comparisons). Symptomatic current or former smokers, regardless of history of asthma, also had greater limitation of activity, slightly lower FEV1, FVC, and inspiratory capacity, and greater airway-wall thickening without emphysema according to HRCT than did asymptomatic current or former smokers. Among symptomatic current or former smokers, 42% used bronchodilators and 23% used inhaled glucocorticoids. CONCLUSIONS Although they do not meet the current criteria for COPD, symptomatic current or former smokers with preserved pulmonary function have exacerbations, activity limitation, and evidence of airway disease. They currently use a range of respiratory medications without any evidence base. (Funded by the National Heart, Lung, and Blood Institute and the Foundation for the National Institutes of Health; SPIROMICS ClinicalTrials.gov number, NCT01969344.).


Proceedings of the National Academy of Sciences of the United States of America | 2012

Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction

Fen Huang; Hongkang Zhang; Meng Wu; Huanghe Yang; Makoto Kudo; Christian J. Peters; Prescott G. Woodruff; Owen D. Solberg; Matthew Donne; Xiaozhu Huang; Dean Sheppard; John V. Fahy; Paul J. Wolters; Brigid L.M. Hogan; Walter E. Finkbeiner; Min Li; Yuh Nung Jan; Lily Yeh Jan; Jason R. Rock

Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms.


Immunological Reviews | 2011

Human asthma phenotypes: from the clinic, to cytokines, and back again

Nirav R. Bhakta; Prescott G. Woodruff

A large body of experimental evidence supports the hypothesis that T‐helper 2 (Th2) cytokines orchestrate allergic airway inflammation in animal models. However, human asthma is heterogeneous with respect to clinical features, cellular sources of inflammation, and response to common therapies. This disease heterogeneity has been investigated using sputum cytology as well as unbiased clustering approaches using cellular and clinical data. Important differences in cytokine‐driven inflammation may underlie this heterogeneity, and studies in human subjects with asthma have begun to elucidate these molecular differences. This molecular heterogeneity may be assessed by existing biomarkers (induced sputum evaluation or exhaled nitric oxide testing) or may require novel biomarkers. Effective testing and application of emerging therapies that target Th2 cytokines will depend on accurate and easily obtained biomarkers of this molecular heterogeneity in asthma. Furthermore, whether other non‐Th2 cytokine pathways underlie airway inflammation in specific subsets of patients with asthma is an unresolved question and an important goal of future research using both mouse models and human studies.


Thorax | 2014

Design of the Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS)

David Couper; Lisa M. LaVange; MeiLan K. Han; R. Graham Barr; Eugene R. Bleecker; Eric A. Hoffman; Richard E. Kanner; Eric C. Kleerup; Fernando J. Martinez; Prescott G. Woodruff; Stephen I. Rennard

Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS) is a multicentre observational study of chronic obstructive pulmonary disease (COPD) designed to guide future development of therapies for COPD by providing robust criteria for subclassifying COPD participants into groups most likely to benefit from a given therapy during a clinical trial, and identifying biomarkers/phenotypes that can be used as intermediate outcomes to reliably predict clinical benefit during therapeutic trials. The goal is to enrol 3200 participants in four strata. Participants undergo a baseline visit and three annual follow-up examinations, with quarterly telephone calls. Adjudication of exacerbations and mortality will be undertaken.


Journal of Immunology | 2011

Gene Expression Patterns of Th2 Inflammation and Intercellular Communication in Asthmatic Airways

David F. Choy; Barmak Modrek; Alexander R. Abbas; Sarah K. Kummerfeld; Hilary Clark; Lawren C. Wu; Grazyna Fedorowicz; Zora Modrusan; John V. Fahy; Prescott G. Woodruff; Joseph R. Arron

Asthma is canonically thought of as a disorder of excessive Th2-driven inflammation in the airway, although recent studies have described heterogeneity with respect to asthma pathophysiology. We have previously described distinct phenotypes of asthma based on the presence or absence of a three-gene “Th2 signature” in bronchial epithelium, which differ in terms of eosinophilic inflammation, mucin composition, subepithelial fibrosis, and corticosteroid responsiveness. In the present analysis, we sought to describe Th2 inflammation in human asthmatic airways quantitatively with respect to known mediators of inflammation and intercellular communication. Using whole-genome microarray and quantitative real-time PCR analysis of endobronchial biopsies from 27 mild-to-moderate asthmatics and 13 healthy controls with associated clinical and demographic data, we found that asthmatic Th2 inflammation is expressed over a variable continuum, correlating significantly with local and systemic measures of allergy and eosinophilia. We evaluated a composite metric describing 79 coexpressed genes associated with Th2 inflammation against the biological space comprising cytokines, chemokines, and growth factors, identifying distinctive patterns of inflammatory mediators as well as Wnt, TGF-β, and platelet-derived growth factor family members. This integrated description of the factors regulating inflammation, cell migration, and tissue remodeling in asthmatic airways has important consequences for the pathophysiological and clinical impacts of emerging asthma therapeutics targeting Th2 inflammation.

Collaboration


Dive into the Prescott G. Woodruff's collaboration.

Top Co-Authors

Avatar

John V. Fahy

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark T. Dransfield

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Couper

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge