Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David G. McEwan is active.

Publication


Featured researches published by David G. McEwan.


Molecular Cell | 2009

A role for ubiquitin in selective autophagy.

Vladimir Kirkin; David G. McEwan; Ivana Novak; Ivan Dikic

Ubiquitination is the hallmark of protein degradation by the 26S proteasome. However, the proteasome is limited in its capacity to degrade oligomeric and aggregated proteins. Removal of harmful protein aggregates is mediated by autophagy, a mechanism by which the cell sequesters cytosolic cargo and delivers it for degradation by the lysosome. Identification of autophagy receptors, such as p62/SQSTM1 and NBR1, which simultaneously bind both ubiquitin and autophagy-specific ubiquitin-like modifiers, LC3/GABARAP, has provided a molecular link between ubiquitination and autophagy. This review explores the hypothesis that ubiquitin represents a selective degradation signal suitable for targeting various types of cargo, ranging from protein aggregates to membrane-bound organelles and microbes.


Molecular Cell | 2009

A Role for NBR1 in Autophagosomal Degradation of Ubiquitinated Substrates

Vladimir Kirkin; Trond Lamark; Yu-shin Sou; Geir Bjørkøy; Jennifer L. Nunn; Jack-Ansgar Bruun; Elena Shvets; David G. McEwan; Terje Høyvarde Clausen; Philipp Wild; Ivana Bilusic; Jean-Philippe Theurillat; Aud Øvervatn; Tetsuro Ishii; Zvulun Elazar; Masaaki Komatsu; Ivan Dikic; Terje Johansen

Autophagy is a catabolic process where cytosolic cellular components are delivered to the lysosome for degradation. Recent studies have indicated the existence of specific receptors, such as p62, which link ubiquitinated targets to autophagosomal degradation pathways. Here we show that NBR1 (neighbor of BRCA1 gene 1) is an autophagy receptor containing LC3- and ubiquitin (Ub)-binding domains. NBR1 is recruited to Ub-positive protein aggregates and degraded by autophagy depending on an LC3-interacting region (LIR) and LC3 family modifiers. Although NBR1 and p62 interact and form oligomers, they can function independently, as shown by autophagosomal clearance of NBR1 in p62-deficient cells. NBR1 was localized to Ub-positive inclusions in patients with liver dysfunction, and depletion of NBR1 abolished the formation of Ub-positive p62 bodies upon puromycin treatment of cells. We propose that NBR1 and p62 act as receptors for selective autophagosomal degradation of ubiquitinated targets.


EMBO Reports | 2010

Nix is a selective autophagy receptor for mitochondrial clearance

Ivana Novak; Vladimir Kirkin; David G. McEwan; Ji Zhang; Philipp Wild; Alexis Rozenknop; Vladimir V. Rogov; Frank Löhr; Doris Popovic; Angelo Occhipinti; Andreas S. Reichert; Janoš Terzić; Volker Dötsch; Paul A. Ney; Ivan Dikic

Autophagy is the cellular homeostatic pathway that delivers large cytosolic materials for degradation in the lysosome. Recent evidence indicates that autophagy mediates selective removal of protein aggregates, organelles and microbes in cells. Yet, the specificity in targeting a particular substrate to the autophagy pathway remains poorly understood. Here, we show that the mitochondrial protein Nix is a selective autophagy receptor by binding to LC3/GABARAP proteins, ubiquitin‐like modifiers that are required for the growth of autophagosomal membranes. In cultured cells, Nix recruits GABARAP‐L1 to damaged mitochondria through its amino‐terminal LC3‐interacting region. Furthermore, ablation of the Nix:LC3/GABARAP interaction retards mitochondrial clearance in maturing murine reticulocytes. Thus, Nix functions as an autophagy receptor, which mediates mitochondrial clearance after mitochondrial damage and during erythrocyte differentiation.


Molecular Cell | 2015

PLEKHM1 Regulates Autophagosome-Lysosome Fusion through HOPS Complex and LC3/GABARAP Proteins

David G. McEwan; Doris Popovic; Andrea Gubas; Seigo Terawaki; Hironori Suzuki; Daniela Stadel; Fraser P. Coxon; Diana Miranda de Stegmann; Sagar Bhogaraju; Karthik Maddi; Anja Kirchof; Evelina Gatti; Miep H. Helfrich; Soichi Wakatsuki; Christian Behrends; Philippe Pierre; Ivan Dikic

The lysosome is the final destination for degradation of endocytic cargo, plasma membrane constituents, and intracellular components sequestered by macroautophagy. Fusion of endosomes and autophagosomes with the lysosome depends on the GTPase Rab7 and the homotypic fusion and protein sorting (HOPS) complex, but adaptor proteins that link endocytic and autophagy pathways with lysosomes are poorly characterized. Herein, we show that Pleckstrin homology domain containing protein family member 1 (PLEKHM1) directly interacts with HOPS complex and contains a LC3-interacting region (LIR) that mediates its binding to autophagosomal membranes. Depletion of PLEKHM1 blocks lysosomal degradation of endocytic (EGFR) cargo and enhances presentation of MHC class I molecules. Moreover, genetic loss of PLEKHM1 impedes autophagy flux upon mTOR inhibition and PLEKHM1 regulates clearance of protein aggregates in an autophagy- and LIR-dependent manner. PLEKHM1 is thus a multivalent endocytic adaptor involved in the lysosome fusion events controlling selective and nonselective autophagy pathways.


Journal of Cell Science | 2014

The LC3 interactome at a glance

Philipp Wild; David G. McEwan; Ivan Dikic

ABSTRACT Continuous synthesis of all cellular components requires their constant turnover in order for a cell to achieve homeostasis. To this end, eukaryotic cells are endowed with two degradation pathways – the ubiquitin-proteasome system and the lysosomal pathway. The latter pathway is partly fed by autophagy, which targets intracellular material in distinct vesicles, termed autophagosomes, to the lysosome. Central to this pathway is a set of key autophagy proteins, including the ubiquitin-like modifier Atg8, that orchestrate autophagosome initiation and biogenesis. In higher eukaryotes, the Atg8 family comprises six members known as the light chain 3 (LC3) or &ggr;-aminobutyric acid (GABA)-receptor-associated protein (GABARAP) proteins. Considerable effort during the last 15 years to decipher the molecular mechanisms that govern autophagy has significantly advanced our understanding of the functioning of this protein family. In this Cell Science at a Glance article and the accompanying poster, we present the current LC3 protein interaction network, which has been and continues to be vital for gaining insight into the regulation of autophagy.


Nature Cell Biology | 2012

Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling

Emma Sandilands; Bryan Serrels; David G. McEwan; Jennifer P. Morton; Juan Pablo Macagno; Kenneth McLeod; Craig Stevens; Valerie G. Brunton; Wallace Y. Langdon; Marcos Vidal; Owen J. Sansom; Ivan Dikic; Simon Wilkinson; Margaret C. Frame

Here we describe a mechanism that cancer cells use to survive when flux through the Src/FAK pathway is severely perturbed. Depletion of FAK, detachment of FAK-proficient cells or expression of non-phosphorylatable FAK proteins causes sequestration of active Src away from focal adhesions into intracellular puncta that co-stain with several autophagy regulators. Inhibition of autophagy results in restoration of active Src at peripheral adhesions, and this leads to cancer cell death. Autophagic targeting of active Src is associated with a Src–LC3B complex, and is mediated by c-Cbl. However, this is independent of c-Cbl E3 ligase activity, but is mediated by an LC3-interacting region. Thus, c-Cbl-mediated autophagic targeting of active Src can occur in cancer cells to maintain viability when flux through the integrin/Src/FAK pathway is disrupted. This exposes a previously unrecognized cancer cell vulnerability that may provide a new therapeutic opportunity.


Trends in Cell Biology | 2011

The Three Musketeers of Autophagy: phosphorylation, ubiquitylation and acetylation

David G. McEwan; Ivan Dikic

Autophagy is a highly conserved process that allows cells, tissues and organs to survive onslaughts such as nutrient deprivation, inflammation, hypoxia and other stresses. The core component proteins that regulate autophagy are well known, and the formation of a double-membrane structure that encompasses cytosolic cargo, including protein aggregates and organelles, has been intensively studied. However, less is known about the inputs that specifically alter recruitment of these components and how post-translational modifications can influence autophagy flux, or the rate at which autophagy substrates are turned over. We propose that three types of post-translational modifications - phosphorylation, ubiquitylation and acetylation - are crucial for autophagy induction, regulation and fine-tuning, and are influenced by a variety of stimuli. Understanding these novel mechanisms of autophagy regulation will give us deeper insights into this process and potentially open up therapeutic avenues.


EMBO Reports | 2007

Src kinase modulates the activation, transport and signalling dynamics of fibroblast growth factor receptors

Emma Sandilands; Shiva Akbarzadeh; Anna Vecchione; David G. McEwan; Margaret C. Frame; John K. Heath

The non‐receptor tyrosine kinase Src is recruited to activated fibroblast growth factor receptor (FGFR) complexes through the adaptor protein factor receptor substrate 2 (FRS2). Here, we show that Src kinase activity has a crucial role in the regulation of FGFR1 signalling dynamics. Following receptor activation by ligand binding, activated Src is colocalized with activated FGFR1 at the plasma membrane. This localization requires both active Src and FGFR1 kinases, which are inter‐dependent. Internalization of activated FGFR1 is associated with release from complexes containing activated Src. Src‐mediated transport and subsequent activation of FGFR1 require both RhoB endosomes and an intact actin cytoskeleton. Chemical and genetic inhibition studies showed strikingly different requirements for Src family kinases in FGFR1‐mediated signalling; activation of the phosphoinositide‐3 kinase–Akt pathway is severely attenuated, whereas activation of the extracellular signal‐regulated kinase pathway is delayed in its initial phase and fails to attenuate.


Biochemical Journal | 2013

Structural basis for phosphorylation-triggered autophagic clearance of Salmonella

Vladimir V. Rogov; Hironori Suzuki; Evgenij Fiskin; Philipp Wild; Andreas Kniss; Alexis Rozenknop; Ryuichi Kato; Masato Kawasaki; David G. McEwan; Frank Löhr; Peter Güntert; Ivan Dikic; Soichi Wakatsuki; Volker Dötsch

Selective autophagy is mediated by the interaction of autophagy modifiers and autophagy receptors that also bind to ubiquitinated cargo. Optineurin is an autophagy receptor that plays a role in the clearance of cytosolic Salmonella. The interaction between receptors and modifiers is often relatively weak, with typical values for the dissociation constant in the low micromolar range. The interaction of optineurin with autophagy modifiers is even weaker, but can be significantly enhanced through phosphorylation by the TBK1 {TANK [TRAF (tumour-necrosis-factor-receptor-associated factor)-associated nuclear factor κB activator]-binding kinase 1}. In the present study we describe the NMR and crystal structures of the autophagy modifier LC3B (microtubule-associated protein light chain 3 beta) in complex with the LC3 interaction region of optineurin either phosphorylated or bearing phospho-mimicking mutations. The structures show that the negative charge induced by phosphorylation is recognized by the side chains of Arg¹¹ and Lys⁵¹ in LC3B. Further mutational analysis suggests that the replacement of the canonical tryptophan residue side chain of autophagy receptors with the smaller phenylalanine side chain in optineurin significantly weakens its interaction with the autophagy modifier LC3B. Through phosphorylation of serine residues directly N-terminally located to the phenylalanine residue, the affinity is increased to the level normally seen for receptor-modifier interactions. Phosphorylation, therefore, acts as a switch for optineurin-based selective autophagy.


Cancer Research | 2007

Chemoresistant KM12C Colon Cancer Cells Are Addicted to Low Cyclic AMP Levels in a Phosphodiesterase 4–Regulated Compartment via Effects on Phosphoinositide 3-Kinase

David G. McEwan; Valerie G. Brunton; George S. Baillie; Nick R. Leslie; Miles D. Houslay; Margaret C. Frame

One of the major problems in treating colon cancer is chemoresistance to cytotoxic chemotherapeutic agents. There is therefore a need to devise new strategies to inhibit colon cancer cell growth and survival. Here, we show that a combination of low doses of the adenylyl cyclase activator forskolin together with the specific cyclic AMP (cAMP) phosphodiesterase-4 (PDE4) inhibitor rolipram, but not the cAMP phosphodiesterase-3 (PDE3) inhibitor cilostamide, causes profound growth arrest of chemoresistant KM12C colon cancer cells. Low-dose forskolin causes KM12C cells to exit the cell cycle in G1 by inducing p27(Kip1) and primes cells for apoptosis on addition of rolipram. The effect of the low-dose forskolin/rolipram combination is mediated by displacement of the phosphatidylinositol 3,4,5-trisphosphate/phosphoinositide 3-kinase signaling module from the plasma membrane and suppression of the Akt/protein kinase-B oncogene pathway, to which KM12C cells are addicted for growth. The cAMP and phosphoinositide 3-kinase pathways form a critical intersection in this response, and reexpression of the tumor suppressor lipid phosphatase, phosphatase and tensin homologue, which is commonly lost or mutated in colon cancer, sensitizes KM12C cells to growth inhibition by challenge with low-dose forskolin. Certain chemoresistant colon cancer cells are therefore exquisitely sensitive to subtle elevation of cAMP by a synergistic low-dose adenylyl cyclase activator/PDE4 inhibitor combination. Indeed, these cells are addicted to maintenance of low cAMP concentrations in a compartment that is regulated by PDE4. Well-tolerated doses of PDE4 inhibitors that are already in clinical development for other therapeutic indications may provide an exciting new strategy for the treatment of colon cancer.

Collaboration


Dive into the David G. McEwan's collaboration.

Top Co-Authors

Avatar

Ivan Dikic

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Philipp Wild

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimir V. Rogov

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Frank Löhr

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Volker Dötsch

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexis Rozenknop

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge