Vladimir Kirkin
Merck KGaA
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vladimir Kirkin.
Molecular Cell | 2009
Vladimir Kirkin; David G. McEwan; Ivana Novak; Ivan Dikic
Ubiquitination is the hallmark of protein degradation by the 26S proteasome. However, the proteasome is limited in its capacity to degrade oligomeric and aggregated proteins. Removal of harmful protein aggregates is mediated by autophagy, a mechanism by which the cell sequesters cytosolic cargo and delivers it for degradation by the lysosome. Identification of autophagy receptors, such as p62/SQSTM1 and NBR1, which simultaneously bind both ubiquitin and autophagy-specific ubiquitin-like modifiers, LC3/GABARAP, has provided a molecular link between ubiquitination and autophagy. This review explores the hypothesis that ubiquitin represents a selective degradation signal suitable for targeting various types of cargo, ranging from protein aggregates to membrane-bound organelles and microbes.
Molecular Cell | 2009
Vladimir Kirkin; Trond Lamark; Yu-shin Sou; Geir Bjørkøy; Jennifer L. Nunn; Jack-Ansgar Bruun; Elena Shvets; David G. McEwan; Terje Høyvarde Clausen; Philipp Wild; Ivana Bilusic; Jean-Philippe Theurillat; Aud Øvervatn; Tetsuro Ishii; Zvulun Elazar; Masaaki Komatsu; Ivan Dikic; Terje Johansen
Autophagy is a catabolic process where cytosolic cellular components are delivered to the lysosome for degradation. Recent studies have indicated the existence of specific receptors, such as p62, which link ubiquitinated targets to autophagosomal degradation pathways. Here we show that NBR1 (neighbor of BRCA1 gene 1) is an autophagy receptor containing LC3- and ubiquitin (Ub)-binding domains. NBR1 is recruited to Ub-positive protein aggregates and degraded by autophagy depending on an LC3-interacting region (LIR) and LC3 family modifiers. Although NBR1 and p62 interact and form oligomers, they can function independently, as shown by autophagosomal clearance of NBR1 in p62-deficient cells. NBR1 was localized to Ub-positive inclusions in patients with liver dysfunction, and depletion of NBR1 abolished the formation of Ub-positive p62 bodies upon puromycin treatment of cells. We propose that NBR1 and p62 act as receptors for selective autophagosomal degradation of ubiquitinated targets.
EMBO Reports | 2010
Ivana Novak; Vladimir Kirkin; David G. McEwan; Ji Zhang; Philipp Wild; Alexis Rozenknop; Vladimir V. Rogov; Frank Löhr; Doris Popovic; Angelo Occhipinti; Andreas S. Reichert; Janoš Terzić; Volker Dötsch; Paul A. Ney; Ivan Dikic
Autophagy is the cellular homeostatic pathway that delivers large cytosolic materials for degradation in the lysosome. Recent evidence indicates that autophagy mediates selective removal of protein aggregates, organelles and microbes in cells. Yet, the specificity in targeting a particular substrate to the autophagy pathway remains poorly understood. Here, we show that the mitochondrial protein Nix is a selective autophagy receptor by binding to LC3/GABARAP proteins, ubiquitin‐like modifiers that are required for the growth of autophagosomal membranes. In cultured cells, Nix recruits GABARAP‐L1 to damaged mitochondria through its amino‐terminal LC3‐interacting region. Furthermore, ablation of the Nix:LC3/GABARAP interaction retards mitochondrial clearance in maturing murine reticulocytes. Thus, Nix functions as an autophagy receptor, which mediates mitochondrial clearance after mitochondrial damage and during erythrocyte differentiation.
Molecular Cell | 2014
Vladimir V. Rogov; Volker Dötsch; Terje Johansen; Vladimir Kirkin
Selective autophagy ensures recognition and removal of various cytosolic cargoes. Hence, aggregated proteins, damaged organelles, or pathogens are enclosed into the double-membrane vesicle, the autophagosome, and delivered to the lysosome for degradation. This process is mediated by selective autophagy receptors, such as p62/SQSTM1. These proteins recognize autophagic cargo and, via binding to small ubiquitin-like modifiers (UBLs)--Atg8/LC3/GABARAPs and ATG5--mediate formation of selective autophagosomes. Recently, it was found that UBLs can directly engage the autophagosome nucleation machinery. Here, we review recent findings on selective autophagy and propose a model for selective autophagosome formation in close proximity to cargo.
Cell Cycle | 2009
Trond Lamark; Vladimir Kirkin; Ivan Dikic; Terje Johansen
Autophagy is an evolutionary conserved cell survival process for degradation of long-lived proteins, damaged organelles and protein aggregates. The mammalian proteins p62 and NBR1 are selectively degraded by autophagy and can act as cargo receptors or adaptors for the autophagic degradation of ubiquitinated substrates. Despite differing in size and primary sequence, both proteins share a similar domain architecture containing an N-terminal PB1 domain, a LIR motif interacting with ATG8 family proteins, and a C-terminal UBA domain interacting with ubiquitin. The LIR motif is essential for their autophagic degradation, indicating that ATG8 family proteins are responsible for the docking of p62 and NBR1 to nucleating autophagosomes. p62 and NBR1 co-operate in the sequestration of misfolded and ubiquitinated proteins in p62 bodies and are both required for their degradation by autophagy. Here we discuss the role of p62 and NBR1 in degradation of ubiquitinated cargoes and the putative role of LIR as a general motif for docking of proteins to ATG8 family proteins.
Oncogene | 2002
Christoph M. Schempp; Vladimir Kirkin; Birgit Simon-Haarhaus; Astrid Kersten; Judit Kiss; Christian Termeer; Bernhard Gilb; Thomas Kaufmann; Christoph Borner; Jonathan P. Sleeman; Jan C. Simon
Hyperforin is a plant derived antibiotic from St. Johns wort. Here we describe a novel activity of hyperforin, namely its ability to inhibit the growth of tumour cells by induction of apoptosis. Hyperforin inhibited the growth of various human and rat tumour cell lines in vivo, with IC50 values between 3–15 μM. Treatment of tumour cells with hyperforin resulted in a dose-dependent generation of apoptotic oligonucleosomes, typical DNA-laddering and apoptosis-specific morphological changes. In MT-450 mammary carcinoma cells hyperforin increased the activity of caspase-9 and caspase-3, and hyperforin-mediated apoptosis was blocked by the broad-range caspase inhibitor zVAD.fmk. When added to MT-450 cells, hyperforin, but not paclitaxel, induced a rapid loss of the mitochondrial transmembrane potential Δψm, and subsequent morphological changes such as homogenization and vacuolization of mitochondria. Monitoring of Δψm revealed that the hyperforin-mediated mitochondrial permeability transition can not be prevented by zVAD.fmk. This indicates that mitochondrial permeabilization is a cause rather than a consequence of caspase activation. Moreover, hyperforin was capable of releasing cytochrome c from isolated mitochondria. These findings suggest that hyperforin activates a mitochondria-mediated apoptosis pathway. In vivo, hyperforin inhibited the growth of autologous MT-450 breast carcinoma in immunocompetent Wistar rats to a similar extent as the cytotoxic drug paclitaxel, without any signs of acute toxicity. Owing to the combination of significant antitumour activity, low toxicity in vivo and natural abundance of the compound, hyperforin holds the promise of being an interesting novel antineoplastic agent that deserves further laboratory and in vivo exploration.
Cancer Research | 2010
Ivan Dikic; Terje Johansen; Vladimir Kirkin
Like other cells in the body, tumor cells depend on the evolutionarily conserved autophagy pathway to survive starvation and stress. Simultaneously, autophagy represents an important tumor-suppressive mechanism. Recent studies have shed new light on this apparent discrepancy and revealed mechanisms by which autophagy can modulate different stages of cancer development. The molecular basis of selectivity in autophagy employs specific receptor molecules, such as p62/SQSTM1, which are able to link autophagy targets and autophagosomal membranes. We discuss the emerging principles of selective autophagy in cancer pathogenesis and treatment.
Journal of Biological Chemistry | 2012
Endalkachew Ashenafi Alemu; Trond Lamark; Knut Martin Torgersen; Aasa Birna Birgisdottir; Kenneth Bowitz Larsen; Ashish Jain; Hallvard Olsvik; Aud Øvervatn; Vladimir Kirkin; Terje Johansen
Background: The ULK complex regulates autophagy, but how it interacts with the basal autophagy apparatus is unknown. Results: ULK1, -2, ATG13, and FIP200 bind to ATG8 family proteins via LIR (LC3 interacting region) motifs. Conclusion: ATG8 family proteins act as scaffolds anchoring the ULK complex on autophagosomes. Significance: We define sequence requirements for the LIR motifs and suggest how the ULK complex interacts with autophagosomes. Autophagy is a lysosome-dependent degradation system conserved among eukaryotes. The mammalian Atg1 homologues, Unc-51 like kinase (ULK) 1 and 2, are multifunctional proteins with roles in autophagy, neurite outgrowth, and vesicle transport. The mammalian ULK complex involved in autophagy consists of ULK1, ULK2, ATG13, FIP200, and ATG101. We have used pulldown and peptide array overlay assays to study interactions between the ULK complex and six different ATG8 family proteins. Strikingly, in addition to ULK1 and ULK2, ATG13 and FIP200 interacted with human ATG8 proteins, all with strong preference for the GABARAP subfamily. Similarly, yeast and Drosophila Atg1 interacted with their respective Atg8 proteins, demonstrating the evolutionary conservation of the interaction. Use of peptide arrays allowed precise mapping of the functional LIR motifs, and two-dimensional scans of the ULK1 and ATG13 LIR motifs revealed which substitutions that were tolerated. This information, combined with an analysis of known LIR motifs, provides us with a clearer picture of sequence requirements for LIR motifs. In addition to the known requirements of the aromatic and hydrophobic residues of the core motif, we found the interactions to depend strongly on acidic residues surrounding the central core LIR motifs. A preference for either a hydrophobic residue or an acidic residue following the aromatic residue in the LIR motif is also evident. Importantly, the LIR motif is required for starvation-induced association of ULK1 with autophagosomes. Our data suggest that ATG8 proteins act as scaffolds for assembly of the ULK complex at the phagophore.
Autophagy | 2009
Vladimir Kirkin; Trond Lamark; Terje Johansen; Ivan Dikic
Selective degradation of intracellular targets, such as misfolded proteins and damaged organelles, is an important homeostatic function that autophagy has acquired in addition to its more general role in restoring the nutrient balance during stress and starvation. Although the exact mechanism underlying selection of autophagic substrates is not known, ubiquitination is a candidate signal for autophagic degradation of misfolded and aggregated proteins. p62/SQSTM1 was the first protein shown to bind both target-associated ubiquitin (Ub) and LC3 conjugated to the phagophore membrane, thereby effectively acting as an autophagic receptor for ubiquitinated targets. Importantly, p62 not only mediates selective degradation but also promotes aggregation of ubiquitinated proteins that can be harmful in some cell types. Is p62 the only autophagic receptor for selective autophagy? Looking for proteins that interact with ATG8 family proteins, we identified NBR1 (neighbor of BRCA1 gene 1) as an additional LC3- and Ub-binding protein. NBR1 is degraded by autophagy depending on its LC3-interacting region (LIR) but does not strictly require p62 for this process. Like p62, NBR1 accumulates and aggregates when autophagy is inhibited and is a part of pathological inclusions. We propose that NBR1 together with p62 promotes autophagic degradation of ubiquitinated targets and simultaneously regulates their aggregation when autophagy becomes limited.
Cell Death & Differentiation | 2007
Vladimir Kirkin; Nathalie Cahuzac; Guardiola-Serrano F; Sébastien Huault; Katharina Lückerath; E. Friedmann; N. Novac; W. S. Wels; B. Martoglio; Anne-Odile Hueber; Martin Zörnig
Fas ligand (FasL) is a type II transmembrane protein belonging to the tumor necrosis factor family. Its binding to the cognate Fas receptor triggers the apoptosis that plays a pivotal role in the maintenance of immune system homeostasis. The cell death-inducing property of FasL has been associated with its extracellular domain, which can be cleaved off by metalloprotease activity to produce soluble FasL. The fate of the remaining membrane-anchored N-terminal part of the FasL molecule has not been determined. Here we show that post-translational processing of overexpressed and endogenous FasL in T-cells by the disintegrin and metalloprotease ADAM10 generates a 17-kDa N-terminal fragment, which lacks the receptor-binding extracellular domain. This FasL remnant is membrane anchored and further processed by SPPL2a, a member of the signal peptide peptidase-like family of intramembrane-cleaving proteases. SPPL2a cleavage liberates a smaller and highly unstable fragment mainly containing the intracellular FasL domain (FasL ICD). We show that this fragment translocates to the nucleus and is capable of inhibiting gene transcription. With ADAM10 and SPPL2a we have identified two proteases implicated in FasL processing and release of the FasL ICD, which has been shown to be important for retrograde FasL signaling.