David G. Myszka
University of Utah
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David G. Myszka.
Cell | 2001
Jennifer E. Garrus; Uta K. von Schwedler; Owen Pornillos; Scott G. Morham; Kenton Zavitz; Hubert E. Wang; Daniel Wettstein; Kirsten M. Stray; Mélanie Côté; Rebecca L. Rich; David G. Myszka; Wesley I. Sundquist
Like other enveloped viruses, HIV-1 uses cellular machinery to bud from infected cells. We now show that Tsg101 protein, which functions in vacuolar protein sorting (Vps), is required for HIV-1 budding. The UEV domain of Tsg101 binds to an essential tetrapeptide (PTAP) motif within the p6 domain of the structural Gag protein and also to ubiquitin. Depletion of cellular Tsg101 by small interfering RNA arrests HIV-1 budding at a late stage, and budding is rescued by reintroduction of Tsg101. Dominant negative mutant Vps4 proteins that inhibit vacuolar protein sorting also arrest HIV-1 and MLV budding. These observations suggest that retroviruses bud by appropriating cellular machinery normally used in the Vps pathway to form multivesicular bodies.
Journal of Molecular Recognition | 1999
David G. Myszka
The quality of optical biosensor data must be improved in order to characterize the mechanism and rate constants associated with molecular interactions. Many of the artifacts associated with binding data can be minimized or eliminated by designing the experiment properly, collecting data under optimum conditions and processing the data with reference surfaces. It is possible to globally fit high‐quality biosensor data with simple bimolecular reaction models, which validates the technology as a biophysical tool for interaction analysis. Copyright
Current Opinion in Biotechnology | 2000
Rebecca L. Rich; David G. Myszka
The number and diversity of surface plasmon resonance (SPR) biosensor applications continue to increase. Evolutions in instrument and sensor chip technology, experimental methodology, and data analysis are making it possible to examine a wider variety of biomolecular interactions in greater mechanistic detail. SPR biosensors are poised to make a significant impact in basic research and pharmaceutical discovery.
Current Opinion in Biotechnology | 1997
David G. Myszka
Surface plasmon resonance based biosensors are being used to define the kinetics of a wide variety of macromolecular interactions. As the popularity of this approach grows, experimental design and data analysis methods continue to evolve. These advances are making it possible to accurately define the assembly mechanisms and rate constants associated with macromolecular interactions.
Journal of Molecular Recognition | 2005
Rebecca L. Rich; David G. Myszka
We identified 1219 articles published in 2006 that described work performed using commercial optical biosensor platforms. It is interesting to witness how the biosensor market is maturing with an increased number of instrument manufacturers offering a wider variety of platforms. However, it is clear from a review of the results presented that the advances in technology are outpacing the skill level of the average biosensor user. While we can track a gradual improvement in the quality of the published work, we clearly have a long way to go before we capitalize on the full potential of biosensor technology. To illustrate what is right with the biosensor literature, we highlight the work of 10 groups who have their eye on the ball. To help out the rest of us who have the lights on but nobody home, we use the literature to address common myths about biosensor technology. Copyright
Cell | 2001
Yihua Huang; Young Chul Park; Rebecca L. Rich; Deena Segal; David G. Myszka; Hao Wu
The inhibitor of apoptosis proteins (IAPs) represent the only endogenous caspase inhibitors and are characterized by the presence of baculoviral IAP repeats (BIRs). Here, we report the crystal structure of the complex between human caspase-7 and XIAP (BIR2 and the proceeding linker). The structure surprisingly reveals that the linker is the only contacting element for the caspase, while the BIR2 domain is invisible in the crystal. The linker interacts with and blocks the substrate groove of the caspase in a backward fashion, distinct from substrate recognition. Structural analyses suggest that the linker is the energetic and specificity determinant of the interaction. Further biochemical characterizations clearly establish that the linker harbors the major energetic determinant, while the BIR2 domain serves as a regulatory element for caspase binding and Smac neutralization.
Cell | 2003
Or Gozani; Philip Karuman; David R. Jones; Dmitri Ivanov; James Cha; Alexey A. Lugovskoy; Cheryl L. Baird; Hong Zhu; Seth J. Field; Stephen L. Lessnick; Jennifer Villasenor; Bharat Mehrotra; Jian Chen; Vikram R. Rao; Joan S. Brugge; Colin G. Ferguson; Bernard Payrastre; David G. Myszka; Lewis C. Cantley; Gerhard Wagner; Nullin Divecha; Glenn D. Prestwich; Junying Yuan
Phosphoinositides (PtdInsPs) play critical roles in cytoplasmic signal transduction pathways. However, their functions in the nucleus are unclear, as specific nuclear receptors for PtdInsPs have not been identified. Here, we show that ING2, a candidate tumor suppressor protein, is a nuclear PtdInsP receptor. ING2 contains a plant homeodomain (PHD) finger, a motif common to many chromatin-regulatory proteins. We find that the PHD fingers of ING2 and other diverse nuclear proteins bind in vitro to PtdInsPs, including the rare PtdInsP species, phosphatidylinositol 5-phosphate (PtdIns(5)P). Further, we demonstrate that the ING2 PHD finger interacts with PtdIns(5)P in vivo and provide evidence that this interaction regulates the ability of ING2 to activate p53 and p53-dependent apoptotic pathways. Together, our data identify the PHD finger as a phosphoinositide binding module and a nuclear PtdInsP receptor, and suggest that PHD-phosphoinositide interactions directly regulate nuclear responses to DNA damage.
Biophysical Journal | 1998
David G. Myszka; Xiaoyi He; Micah Dembo; Thomas A. Morton; Byron Goldstein
Surface-based binding assays are often influenced by the transport of analyte to the sensor surface. Using simulated data sets, we test a simple two-compartment model to see if its description of transport and binding is sufficient to accurately analyze BIACORE data. First we present a computer model that can generate realistic BIACORE data. This model calculates the laminar flow of analyte within the flow cell, its diffusion both perpendicular and parallel to the sensor surface, and the reversible chemical reaction between analyte and immobilized reactant. We use this computer model to generate binding data under a variety of conditions. An analysis of these data sets with the two-compartment model demonstrates that good estimates of the intrinsic reaction rate constants are recovered even when mass transport influences the binding reaction. We also discuss the conditions under which the two-compartment model can be used to determine the diffusion coefficient of the analyte. Our results illustrate that this model can significantly extend the range of association rate constants that can be accurately determined from BIACORE.
Methods in Enzymology | 1998
Thomas A. Morton; David G. Myszka
Surface plasmon resonance based biosensors are being used to define the kinetics of a wide variety of macromolecular interactions. As the popularity of this approach grows, experimental design and data analysis methods continue to evolve. These advances are making it possible to accurately define the assembly mechanisms and rate constants associated with macromolecular interactions.
The EMBO Journal | 2002
Owen Pornillos; Steven L. Alam; Rebecca L. Rich; David G. Myszka; Darrell R. Davis; Wesley I. Sundquist
Human Tsg101 plays key roles in HIV budding and in cellular vacuolar protein sorting (VPS). In performing these functions, Tsg101 binds both ubiquitin (Ub) and the PTAP tetrapeptide ‘late domain’ motif located within the viral Gag protein. These interactions are mediated by the N‐terminal domain of Tsg101, which belongs to the catalytically inactive ubiquitin E2 variant (UEV) family. We now report the struc ture of Tsg101 UEV and chemical shift mapping of the Ub and PTAP binding sites. Tsg101 UEV resembles canonical E2 ubiquitin conjugating enzymes, but has an additional N‐terminal helix, an extended β‐hairpin that links strands 1 and 2, and lacks the two C‐terminal helices normally found in E2 enzymes. PTAP‐containing peptides bind in a hydrophobic cleft exposed by the absence of the C‐terminal helices, whereas ubiquitin binds in a novel site surrounding the β‐hairpin. These studies provide a structural framework for understanding how Tsg101 mediates the protein–protein interactions required for HIV budding and VPS.