Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David G. Streets is active.

Publication


Featured researches published by David G. Streets.


Journal of Geophysical Research | 2004

A technology‐based global inventory of black and organic carbon emissions from combustion

Tami C. Bond; David G. Streets; Kristen F. Yarber; Sibyl M. Nelson; Jung Hun Woo; Z. Klimont

[1] We present a global tabulation of black carbon (BC) and primary organic carbon (OC) particles emitted from combustion. We include emissions from fossil fuels, biofuels, open biomass burning, and burning of urban waste. Previous ‘‘bottom-up’’ inventories of black and organic carbon have assigned emission factors on the basis of fuel type and economic sector alone. Because emission rates are highly dependent on combustion practice, we consider combinations of fuel, combustion type, and emission controls and their prevalence on a regional basis. Central estimates of global annual emissions are 8.0 Tg for black carbon and 33.9 Tg for organic carbon. These estimates are lower than previously published estimates by 25–35%. The present inventory is based on 1996 fuel-use data, updating previous estimates that have relied on consumption data from 1984. An offset between decreased emission factors and increased energy use since the base year of the previous inventory prevents the difference between this work and previous inventories from being greater. The contributions of fossil fuel, biofuel, and open burning are estimated as 38%, 20%, and 42%, respectively, for BC, and 7%, 19%, and 74%, respectively, for OC. We present a bottom-up estimate of uncertainties in source strength by combining uncertainties in particulate matter emission factors, emission characterization, and fuel use. The total uncertainties are about a factor of 2, with uncertainty ranges of 4.3–22 Tg/yr for BC and 17–77 Tg/yr for OC. Low-technology combustion contributes greatly to both the emissions and the uncertainties. Advances in emission characterization for small residential, industrial, and mobile sources and topdown analysis combining field measurements and transport modeling with iterative inventory development will be required to reduce the uncertainties further. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0322 Atmospheric Composition and Structure: Constituent sources and sinks; 0345 Atmospheric Composition and Structure: Pollution—urban and regional (0305); 0360 Atmospheric Composition and Structure: Transmission and scattering of radiation; 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry; KEYWORDS: emission, black carbon, organic carbon, fossil fuel, biofuel, biomass burning


Science | 2012

Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security

Drew T. Shindell; Johan Kuylenstierna; E. Vignati; Rita Van Dingenen; M. Amann; Z. Klimont; Susan C. Anenberg; Nicholas Z. Muller; Greet Janssens-Maenhout; Frank Raes; Joel Schwartz; Greg Faluvegi; Luca Pozzoli; Kaarle Kupiainen; Lena Höglund-Isaksson; Lisa Emberson; David G. Streets; V. Ramanathan; Kevin Hicks; N.T. Kim Oanh; George Milly; Martin L. Williams; Volodymyr Demkine; D. Fowler

Why Wait? Tropospheric ozone can be dangerous to human health, can be harmful to vegetation, and is a major contributor to climate warming. Black carbon also has significant negative effects on health and air quality and causes warming of the atmosphere. Shindell et al. (p. 183) present results of an analysis of emissions, atmospheric processes, and impacts for each of these pollutants. Seven measures were identified that, if rapidly implemented, would significantly reduce global warming over the next 50 years, with the potential to prevent millions of deaths worldwide from outdoor air pollution. Furthermore, some crop yields could be improved by decreasing agricultural damage. Most of the measures thus appear to have economic benefits well above the cost of their implementation. Reducing anthropogenic emissions of methane and black carbon would have multiple climate and health benefits. Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at


Global Biogeochemical Cycles | 2007

Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000

Tami C. Bond; Ekta Bhardwaj; Rong Dong; Rahil Jogani; Soonkyu Jung; Christoph A. Roden; David G. Streets; Nina M. Trautmann

700 to


Atmospheric Chemistry and Physics | 2011

Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010

Zifeng Lu; Qiang Zhang; David G. Streets

5000 per metric ton, which is well above typical marginal abatement costs (less than


Environmental Science & Technology | 2011

ALL-TIME RELEASES OF MERCURY TO THE ATMOSPHERE FROM HUMAN ACTIVITIES

David G. Streets; Molly K. Devane; Zifeng Lu; Tami C. Bond; Elsie M. Sunderland; Daniel J. Jacob

250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide–reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.


Atmospheric Environment | 1999

Anthropogenic NOx emissions in Asia in the period 1990-2020

John A. van Aardenne; Gregory R. Carmichael; Hiram Levy; David G. Streets; L. Hordijk

We present an emission inventory of primary black carbon (BC) and primary organic carbon (OC) aerosols from fossil fuel and biofuel combustion between 1850 and 2000. We reconstruct fossil fuel consumption and represent changes in technology on a national and sectoral basis. Our estimates rely on new estimates of biofuel consumption, and updated emission factors for old technologies. Emissions of black carbon increase almost linearly, totaling about 1000 Gg in 1850, 2200 Gg in 1900, 3000 Gg in 1950, and 4400 Gg in 2000. Primary organic carbon shows a similar pattern, with emissions of 4100 Gg, 5800 Gg, 6700 Gg, and 8700 Gg in 1850, 1900, 1950, and 2000, respectively. Biofuel is responsible for over half of BC emission until about 1890, and dominates energy-related primary OC emission throughout the entire period. Coal contributes the greatest fraction of BC emission between 1880 and 1975, and is overtaken by emissions from biofuel around 1975, and by diesel engines around 1990. Previous work suggests a rapid rise in BC emissions between 1950 and 2000. This work supports a more gradual increase between 1950 and 2000, similar to the increase between 1850 and 1925; implementation of clean technology is a primary reason.


Journal of Geophysical Research | 2003

Inverting for emissions of carbon monoxide from Asia using aircraft observations over the western Pacific

Paul I. Palmer; Daniel J. Jacob; Dylan B. A. Jones; Colette L. Heald; Robert M. Yantosca; Jennifer A. Logan; Glen W. Sachse; David G. Streets

Abstract. China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996–2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly temporal distributions for major sectors and gridded emissions at a resolution of 0.1°×0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %–17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be −16 %–17 %, −43 %–93 %, and −43 %–80 % for China, and −15 %–16 %, −41 %–87 %, and −44 %–92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and the actual FGD removal efficiency are the main contributors to the uncertainties of SO2 emissions. Biofuel combustion related parameters (i.e., technology divisions, fuel use, and emission factor determinants) are the largest source of OC uncertainties, whereas BC emissions are also sensitive to the parameters of coal combustion in the residential and industrial sectors and the coke-making process. Comparing our results with satellite observations, we find that the trends of estimated emissions in both China and India are in good agreement with the trends of aerosol optical depth (AOD) and SO2 retrievals obtained from different satellites.


Climate Dynamics | 2007

Climate simulations for 1880–2003 with GISS modelE

James E. Hansen; Makiko Sato; Reto Ruedy; Pushker A. Kharecha; Andrew A. Lacis; Ron L. Miller; Larissa Nazarenko; K. Lo; Gavin A. Schmidt; Gary L. Russell; Igor Aleinov; Susanne E. Bauer; E. Baum; Brian Cairns; V. M. Canuto; Mark A. Chandler; Y. Cheng; Armond Cohen; A. D. Del Genio; G. Faluvegi; Eric L. Fleming; Andrew D. Friend; Timothy M. Hall; Charles H. Jackman; Jeffrey Jonas; Maxwell Kelley; Nancy Y. Kiang; D. Koch; Gordon Labow; J. Lerner

Understanding the biogeochemical cycling of mercury is critical for explaining the presence of mercury in remote regions of the world, such as the Arctic and the Himalayas, as well as local concentrations. While we have good knowledge of present-day fluxes of mercury to the atmosphere, we have little knowledge of what emission levels were like in the past. Here we develop a trend of anthropogenic emissions of mercury to the atmosphere from 1850 to 2008-for which relatively complete data are available-and supplement that trend with an estimate of anthropogenic emissions prior to 1850. Global mercury emissions peaked in 1890 at 2600 Mg yr(-1), fell to 700-800 Mg yr(-1) in the interwar years, then rose steadily after 1950 to present-day levels of 2000 Mg yr(-1). Our estimate for total mercury emissions from human activities over all time is 350 Gg, of which 39% was emitted before 1850 and 61% after 1850. Using an eight-compartment global box-model of mercury biogeochemical cycling, we show that these emission trends successfully reproduce present-day atmospheric enrichment in mercury.


Journal of Geophysical Research | 2008

Effects of 2000-2050 Global Change on Ozone Air Quality in the United States

Shiliang Wu; Loretta J. Mickley; Eric M. Leibensperger; Daniel J. Jacob; David Rind; David G. Streets

Nitrogen oxides emissions in Asia during the period 1990–2020 due to anthropogenic activity are presented. These estimates are based on the RAINS-ASIA methodology (Foell et al., 1995, Acid Rain and Emission Reduction in Asia, World Bank), which includes a dynamic model for energy forecasts, and information on 6 energy sectors and 9 fuel types. The energy forecasts are combined with process emission factors to yield NOx emission estimates at the country level, the regional level, and on a 1 degree by 1 degree grid. In 1990 the total NOx emissions are estimated to be ∼19 Tg NO2, with China (43%), India (18%) and Japan (13%) accounting for 75% of the total. Emissions by fuel are dominated by burning of hard coal and emissions by economic activity are dominated by the power, transport, and industrial sectors. These new estimates of NOx emissions are compared with those published by Hameed and Dignon (1988, Atmospheric Environment 22, 441–449) and Akimoto and Narita (1994, Atmospheric Environment 28, 213–225). Future emissions under a no-further-control scenario are also presented. During the period 1990–2020 the NOx emissions increase by 350%, to ∼86 Tg NO2. The increase in NOx emissions by sector and end-use varies between countries, but in all countries this increase is strongest in the power and transport sectors. These results highlight the dynamic nature of energy use in Asia, and the need to take the rapid growth in NOx emissions in Asia into account in studies of air pollution and atmospheric chemistry.


Journal of Geophysical Research | 2004

On the future of carbonaceous aerosol emissions

David G. Streets; Tami C. Bond; T. Lee; Carey Jang

emission estimates of carbon monoxide (CO) from Asia. A priori emissions and their errors are from a customized bottom-up Asian emission inventory for the TRACE-P period. The global three-dimensional GEOS-CHEM chemical transport model (CTM) is used as the forward model. The CTM transport error (20–30% of the CO concentration) is quantified from statistics of the difference between the aircraft observations of CO and the forward model results with a priori emissions, after removing the mean bias which is attributed to errors in the a priori emissions. Additional contributions to the error budget in the inverse analysis include the representation error (typically 5% of the CO concentration) and the measurement accuracy (’2% of the CO concentration). We find that the inverse model can usefully constrain five sources: Chinese fuel consumption, Chinese biomass burning, total emissions from Korea and Japan, total emissions from Southeast Asia, and the ensemble of all other sources. The inversion indicates a 54% increase in anthropogenic emissions from China (to 168 Tg CO yr � 1 ) relative to the a priori; this value is still much lower than had been derived in previous inversions using the CMDL network of surface observations. A posteriori emissions of biomass burning in Southeast Asia and China are much lower than a priori estimates. INDEX TERMS: 0322 Atmospheric Composition and Structure: Constituent sources and sinks; 0345 Atmospheric Composition and Structure: Pollution—urban and regional (0305); 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry; 0368 Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry; KEYWORDS: inverse, Asian emissions, carbon monoxide

Collaboration


Dive into the David G. Streets's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zifeng Lu

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youhua Tang

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. R. Blake

University of California

View shared research outputs
Top Co-Authors

Avatar

Glen W. Sachse

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge