Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David G. Wahman is active.

Publication


Featured researches published by David G. Wahman.


Environmental Science & Technology | 2011

Free Chlorine and Monochloramine Application to Nitrifying Biofilm: Comparison of Biofilm Penetration, Activity, and Viability

Woo Hyoung Lee; David G. Wahman; Paul L. Bishop; Jonathan G. Pressman

Biofilm in drinking water systems is undesirable. Free chlorine and monochloramine are commonly used as secondary drinking water disinfectants, but monochloramine is perceived to penetrate biofilm better than free chlorine. However, this hypothesis remains unconfirmed by direct biofilm monochloramine measurement. This study compared free chlorine and monochloramine biofilm penetration into an undefined mixed-culture nitrifying biofilm by use of microelectrodes and assessed the subsequent effect on biofilm activity and viability by use of dissolved oxygen (DO) microelectrodes and confocal laser scanning microscopy (CLSM) with LIVE/DEAD BacLight. For equivalent chlorine concentrations, monochloramine initially penetrated biofilm 170 times faster than free chlorine, and even after subsequent application to a monochloramine penetrated biofilm, free chlorine penetration was limited. DO profiles paralleled monochloramine profiles, providing evidence that either the biofilm was inactivated with monochloramines penetration or its persistence reduced available substrate (free ammonia). While this research clearly demonstrated monochloramines greater penetration, this penetration did not necessarily translate to immediate viability loss. Even though free chlorines penetration was limited compared to that of monochloramine, it more effectively (on a cell membrane integrity basis) inactivated microorganisms near the biofilm surface. Limited free chlorine penetration has implications when converting to free chlorine in full-scale chloraminated systems in response to nitrification episodes.


Applied and Environmental Microbiology | 2005

Cometabolism of trihalomethanes by Nitrosomonas europaea.

David G. Wahman; Lynn E. Katz; Gerald E. Speitel

ABSTRACT The ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) was shown to degrade low concentrations (50 to 800 μg/liter) of the four trihalomethanes (trichloromethane [TCM], or chloroform; bromodichloromethane [BDCM]; dibromochloromethane [DBCM]; and tribromomethane [TBM], or bromoform) commonly found in treated drinking water. Individual trihalomethane (THM) rate constants (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(k_{1_{THM}}\) \end{document}) increased with increasing THM bromine substitution, with TBM > DBCM > BDCM > TCM (0.23, 0.20, 0.15, and 0.10 liters/mg/day, respectively). Degradation kinetics were best described by a reductant model that accounted for two limiting reactants, THMs and ammonia-nitrogen (NH3-N). A decrease in the temperature resulted in a decrease in both ammonia and THM degradation rates with ammonia rates affected to a greater extent than THM degradation rates. Similarly to the THM degradation rates, product toxicity, measured by transformation capacity (Tc), increased with increasing THM bromine substitution. Because both the rate constants and product toxicities increase with increasing THM bromine substitution, a waters THM speciation will be an important consideration for process implementation during drinking water treatment. Even though a given water sample may be kinetically favored based on THM speciation, the resulting THM product toxicity may not allow stable treatment process performance.


Applied and Environmental Microbiology | 2009

Monochloramine Disinfection Kinetics of Nitrosomonas europaea by Propidium Monoazide Quantitative PCR and Live/Dead BacLight Methods

David G. Wahman; Karen A. Wulfeck-Kleier; Jonathan G. Pressman

ABSTRACT Monochloramine disinfection kinetics were determined for the pure-culture ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) by two culture-independent methods, namely, Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR). Both methods were first verified with mixtures of heat-killed (nonviable) and non-heat-killed (viable) cells before a series of batch disinfection experiments with stationary-phase cultures (batch grown for 7 days) at pH 8.0, 25°C, and 5, 10, and 20 mg Cl2/liter monochloramine. Two data sets were generated based on the viability method used, either (i) LD or (ii) PMA-qPCR. These two data sets were used to estimate kinetic parameters for the delayed Chick-Watson disinfection model through a Bayesian analysis implemented in WinBUGS. This analysis provided parameter estimates of 490 mg Cl2-min/liter for the lag coefficient (b) and 1.6 × 10−3 to 4.0 × 10−3 liter/mg Cl2-min for the Chick-Watson disinfection rate constant (k). While estimates of b were similar for both data sets, the LD data set resulted in a greater k estimate than that obtained with the PMA-qPCR data set, implying that the PMA-qPCR viability measure was more conservative than LD. For N. europaea, the lag phase was not previously reported for culture-independent methods and may have implications for nitrification in drinking water distribution systems. This is the first published application of a PMA-qPCR method for disinfection kinetic model parameter estimation as well as its application to N. europaea or monochloramine. Ultimately, this PMA-qPCR method will allow evaluation of monochloramine disinfection kinetics for mixed-culture bacteria in drinking water distribution systems.


Water Research | 2013

Monochloramine Cometabolism by Nitrosomonas europaea under Drinking Water Conditions

David G. Wahman; Gerald E. Speitel

Chloramine is widely used in United States drinking water systems as a secondary disinfectant, which may promote the growth of nitrifying bacteria because ammonia is present. At the onset of nitrification, both nitrifying bacteria and their products exert a monochloramine demand, decreasing the residual disinfectant concentration in water distribution systems. This work investigated another potentially significant mechanism for residual disinfectant loss: monochloramine cometabolism by ammonia-oxidizing bacteria (AOB). Monochloramine cometabolism was studied with the pure culture AOB Nitrosomonas europaea (ATCC 19718) in batch kinetic experiments under drinking water conditions. Three batch reactors were used in each experiment: a positive control to estimate the ammonia kinetic parameters, a negative control to account for abiotic reactions, and a cometabolism reactor to estimate the cometabolism kinetic constants. Kinetic parameters were estimated in AQUASIM with a simultaneous fit to all experimental data. The cometabolism reactors showed a more rapid monochloramine decay than in the negative controls, demonstrating that cometabolism occurs. Cometabolism kinetics were best described by a pseudo first order model with a reductant term to account for ammonia availability. Monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism was a significant loss mechanism (30-60% of the observed monochloramine decay). These results suggest that monochloramine cometabolism should occur in practice and may be a significant contribution to monochloramine decay during nitrification episodes in drinking water distribution systems.


Water Research | 2011

Performance and biofilm activity of nitrifying biofilters removing trihalomethanes.

David G. Wahman; Lynn E. Katz; Gerald E. Speitel

Nitrifying biofilters seeded with three different mixed-culture sources removed trichloromethane (TCM) and dibromochloromethane (DBCM) with removals reaching 18% for TCM and 75% for DBCM. In addition, resuspended biofilm removed TCM, bromodichloromethane (BDCM), DBCM, and tribromomethane (TBM) in backwash batch kinetic tests, demonstrating that the biofilters contained organisms capable of biotransforming the four regulated trihalomethanes (THMs) commonly found in treated drinking water. Upon the initial and subsequent increased TCM addition, total ammonia nitrogen (TOTNH(3)) removal decreased and then reestablished, indicating an adjustment by the biofilm bacteria. In addition, changes in DBCM removal indicated a change in activity related to DBCM. The backwash batch kinetic tests provided a useful tool to evaluate the biofilms bacteria. Based on these experiments, the biofilters contained bacteria with similar THM removal kinetics to those seen in previous batch kinetic experiments. Overall, performance or selection does not seem based specifically on nutrients, source water, or source cultures and most likely results from THM product toxicity, and the use of GAC media appeared to offer benefits over anthracite for biofilter stability and long-term performance, although the reasons for this advantage are not apparent based on research to date.


Applied and Environmental Microbiology | 2011

Ammonia-Oxidizing Bacteria in Biofilters Removing Trihalomethanes Are Related to Nitrosomonas oligotropha

David G. Wahman; Mary Jo Kirisits; Lynn E. Katz; Gerald E. Speitel

ABSTRACT Ammonia-oxidizing bacteria (AOB) in nitrifying biofilters degrading four regulated trihalomethanes—trichloromethane, bromodichloromethane, dibromochloromethane, and tribromomethane—were related to Nitrosomonas oligotropha. N. oligotropha is associated with chloraminated drinking water systems, and its presence in the biofilters might indicate that trihalomethane tolerance is another reason that this bacterium is dominant in chloraminated systems.


Environmental Science & Technology | 2012

Relative importance of nitrite oxidation by hypochlorous acid under chloramination conditions.

David G. Wahman; Gerald E. Speitel

Nitrification can occur in water distribution systems where chloramines are used as the disinfectant. The resulting product, nitrite, can be oxidized by monochloramine and hypochlorous acid (HOCl), potentially leading to rapid monochloramine loss. This research characterizes the importance of the HOCl reaction, which has typically been ignored because of HOCls low concentration. Also, the general acid-assisted rate constants for carbonic acid and bicarbonate ion were estimated for the monochloramine reaction. The nitrite oxidation reactions were incorporated into a widely accepted chloramine autodecomposition model, providing a comprehensive model that was implemented in AQUASIM. Batch kinetic experiments were conducted to evaluate the significance of the HOCl reaction and to estimate carbonate buffer rate constants for the monochloramine reaction. The experimental data and model simulations indicated that HOCl may be responsible for up to 60% of the nitrite oxidation, and that the relative importance of the HOCl reaction for typical chloramination conditions peaks between pH 7.5 and 8.5, generally increasing with (1) decreasing nitrite concentration, (2) increasing chlorine to nitrogen mass ratio, and (3) decreasing monochloramine concentration. Therefore, nitrites reaction with HOCl may be important during chloramination and should be included in water quality models to simulate nitrite and monochloramines fate.


Environmental Science & Technology | 2014

Biofilm Community Dynamics in Bench-Scale Annular Reactors Simulating Arrestment of Chloraminated Drinking Water Nitrification

Vicente Gomez-Alvarez; Karen A. Schrantz; Jonathan G. Pressman; David G. Wahman

Annular reactors (ARs) were used to study biofilm community succession and provide ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I-IV). Analysis of 16S rRNA-encoding gene sequence reads (454-pyrosequencing) examined viable and total biofilm communities and found total samples were representative of the underlying viable community. Bacterial community structure showed dynamic changes corresponding with AR operational parameters. Period I (complete nitrification and no NH2Cl residual) was dominated by Bradyrhizobium (total cumulative distribution: 38%), while environmental Legionella-like phylotypes peaked (19%) during Period II (complete nitrification and minimal NH2Cl residual). Nitrospira moscoviensis (nitrite-oxidizing bacteria) was detected in early periods (2%) but decreased to <0.02% in later periods, corresponding to nitrite accumulation. Methylobacterium (19%) and members of Nitrosomonadaceae (42%) dominated Period III (complete ammonia and partial nitrite oxidation and low NH2Cl residual). An increase in Afipia (haloacetic acid-degrading bacteria) relative abundance (<2% to 42%) occurred during Period IV (minimal nitrification and moderate to high NH2Cl residual). Microbial community and operational data provided no evidence of taxa-time relationship, but rapid community transitions indicated that the system had experienced ecological regime shifts to alternative stable states.


Environmental Science: Water Research & Technology | 2016

Resilience of microbial communities in a simulated drinking water distribution system subjected to disturbances: role of conditionally rare taxa and potential implications for antibiotic-resistant bacteria

Vicente Gomez-Alvarez; Stacy Pfaller; Jonathan G. Pressman; David G. Wahman; Randy P. Revetta

Many US water utilities using chloramine as their secondary disinfectant have experienced nitrification episodes that detrimentally impact water quality in their distribution systems. A semi-closed pipe-loop chloraminated drinking water distribution system (DWDS) simulator was used to evaluate the biological stability of the system and describe the response of microbial communities in the bulk water (BW) and biofilm (BF) phase to a disturbance caused by changes in the operational parameters. The DWDS simulator was operated through five successive operational schemes, including an episode of nitrification, followed by a ‘chlorine burn’ by switching the disinfectant from chloramine to free chlorine. Community comparisons showed significant differences in the structure based on disinfectant and phase (e.g., BW and BF). Both disturbances created changes in the relative abundances of the core microbiome and some members of the rare biosphere (i.e., conditionally rare taxa); however, the microbial community was resilient and returned to its stable state. Genes associated with multiple antibiotic resistance mechanisms were found to be a component of the core genomes of waterborne isolates. These results provide evidence of variations in the bulk water/biofilm microbial community structure during episodes of disturbance (e.g., disinfectant switching practices, nitrification) and its recovery after disturbance.


Applied and Environmental Microbiology | 2010

Determination of the effects of medium composition on the monochloramine disinfection kinetics of Nitrosomonas europaea by the propidium monoazide quantitative PCR and live/dead BacLight methods.

David G. Wahman; Karen A. Schrantz; Jonathan G. Pressman

ABSTRACT Various medium compositions (phosphate, 1 to 50 mM; ionic strength, 2.8 to 150 meq/liter) significantly affected Nitrosomonas europaea monochloramine disinfection kinetics, as determined by the Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR) methods (lag coefficient, 37 to 490 [LD] and 91 to 490 [PMA-qPCR] mg·min/liter; Chick-Watson rate constant, 4.0 × 10−3 to 9.3 × 10−3 [LD] and 1.6 × 10−3 to 9.6 × 10−3 [PMA-qPCR] liter/mg·min). Two competing effects may account for the variation in disinfection kinetic parameters: (i) increasing kinetics (disinfection rate constant [k] increased, lag coefficient [b] decreased) with increasing phosphate concentration and (ii) decreasing kinetics (k decreased, b increased) with increasing ionic strength. The results support development of a standard medium for evaluating disinfection kinetics in drinking water.

Collaboration


Dive into the David G. Wahman's collaboration.

Top Co-Authors

Avatar

Gerald E. Speitel

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Jonathan G. Pressman

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Woo Hyoung Lee

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Lynn E. Katz

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Karen A. Schrantz

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Paul L. Bishop

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Vicente Gomez-Alvarez

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darren A. Lytle

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Gregory V. Lowry

Carnegie Mellon University

View shared research outputs
Researchain Logo
Decentralizing Knowledge