Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Gallego-Ortega is active.

Publication


Featured researches published by David Gallego-Ortega.


Lancet Oncology | 2007

Expression of choline kinase alpha to predict outcome in patients with early-stage non-small-cell lung cancer: a retrospective study

Ana Ramírez de Molina; Jacinto Sarmentero-Estrada; Cristóbal Belda-Iniesta; Miquel Taron; Victor Ramírez de Molina; Paloma Cejas; Marcin Skrzypski; David Gallego-Ortega; Javier Castro; Enrique Casado; Miguel Angel García-Cabezas; Jose Javier Sanchez; Manuel Nistal; Rafael Rosell; Manuel González-Barón; Juan Carlos Lacal

BACKGROUND Adequate prognostic markers to predict outcome of patients with lung cancer are still needed. The aim of this study was to assess whether choline kinase alpha (ChoKalpha) gene expression could identify patients with different prognoses. ChoKalpha is an enzyme involved in cell metabolism and proliferation and has a role in oncogene-mediated transformation in several human tumours, including lung cancer. METHODS 60 patients with non-small-cell lung cancer (NSCLC) who had undergone surgical resection in a single centre were enrolled into the study as the training group. We used real-time reverse-transcriptase PCR (RT-PCR) to measure ChoKalpha gene expression and analyse the association between ChoKalpha expression and survival in evaluable patients. Additionally, a second group of 120 patients with NSCLC from a different hospital were enrolled into the study as the validation group. We did an overall analysis of all 167 patients who had available tissue to confirm the cut-off point for future studies. The primary endpoints were lung-cancer-specific survival and relapse-free survival. FINDINGS Seven of the 60 patients in the training group were not evaluable due to insufficient tissue. In the 53 evaluable patients, the cut-off for those with ChoKalpha overexpression was defined by receiver operator under the curve (ROC) methodology. 4-year lung-cancer-specific survival was 54.43% (95% CI 28.24-80.61) for 25 patients with ChoKalpha expression above the ROC-defined cut-off compared with 88.27% (75.79-100) for 28 patients with concentrations of the enzyme below this cut-off (hazard ratio [HR] 3.14 [0.83-11.88], p=0.07). In the validation group, six of the 120 enrolled patients were not evaluable due to insufficient tissue. For the other 114 patients, 4-year lung-cancer-specific survival was 46.66% (32.67-59.65) for those with ChoKalpha expression above the ROC-defined cut-off compared with 67.01% (50.92-81.11) for patients with concentrations of ChoKalpha below the cut-off (HR 1.87 [1.01-3.46], p=0.04). A global analysis of all 167 patients further confirmed the association between ChoKalpha overexpression and worse clinical outcome of patients with NSCLC: 4-year lung-cancer-specific survival for ChoKalpha expression above the ROC-defined cut-off was 49.00% (36.61-60.38) compared with 70.52% (59.80-76.75) for those with concentrations of ChoKalpha below the cut-off (HR 1.98 [1.14-3.45], p=0.01). The overall analysis confirmed the cut-off for ChoKalpha expression should be 1.91-times higher than concentrations noted in healthy tissues when ChoKalpha is used as an independent predictive factor of relapse-free and lung-cancer-specific survival in patients with early-stage NSCLC. INTERPRETATION ChoKalpha expression is a new prognostic factor that could be used to help identify patients with early-stage NSCLC who might be at high risk of recurrence, and to identify patients with favourable prognosis who could receive less aggressive treatment options or avoid adjuvant systemic treatment. New treatments that inhibit ChoKalpha expression or activity in patients with lung cancer should be studied further.


PLOS ONE | 2009

Differential Role of Human Choline Kinase α and β Enzymes in Lipid Metabolism: Implications in Cancer Onset and Treatment

David Gallego-Ortega; Ana Ramírez de Molina; Maria Angeles Ramos; Fátima Valdés-Mora; María G. Barderas; Jacinto Sarmentero-Estrada; Juan Carlos Lacal

Background The Kennedy pathway generates phosphocoline and phosphoethanolamine through its two branches. Choline Kinase (ChoK) is the first enzyme of the Kennedy branch of synthesis of phosphocholine, the major component of the plasma membrane. ChoK family of proteins is composed by ChoKα and ChoKβ isoforms, the first one with two different variants of splicing. Recently ChoKα has been implicated in the carcinogenic process, since it is over-expressed in a variety of human cancers. However, no evidence for a role of ChoKβ in carcinogenesis has been reported. Methodology/Principal Findings Here we compare the in vitro and in vivo properties of ChoKα1 and ChoKβ in lipid metabolism, and their potential role in carcinogenesis. Both ChoKα1 and ChoKβ showed choline and ethanolamine kinase activities when assayed in cell extracts, though with different affinity for their substrates. However, they behave differentially when overexpressed in whole cells. Whereas ChoKβ display an ethanolamine kinase role, ChoKα1 present a dual choline/ethanolamine kinase role, suggesting the involvement of each ChoK isoform in distinct biochemical pathways under in vivo conditions. In addition, while overexpression of ChoKα1 is oncogenic when overexpressed in HEK293T or MDCK cells, ChoKβ overexpression is not sufficient to induce in vitro cell transformation nor in vivo tumor growth. Furthermore, a significant upregulation of ChoKα1 mRNA levels in a panel of breast and lung cancer cell lines was found, but no changes in ChoKβ mRNA levels were observed. Finally, MN58b, a previously described potent inhibitor of ChoK with in vivo antitumoral activity, shows more than 20-fold higher efficiency towards ChoKα1 than ChoKβ. Conclusion/Significance This study represents the first evidence of the distinct metabolic role of ChoKα and ChoKβ isoforms, suggesting different physiological roles and implications in human carcinogenesis. These findings constitute a step forward in the design of an antitumoral strategy based on ChoK inhibition.


The International Journal of Biochemistry & Cell Biology | 2008

Choline kinase as a link connecting phospholipid metabolism and cell cycle regulation: Implications in cancer therapy

Ana Ramírez de Molina; David Gallego-Ortega; Jacinto Sarmentero-Estrada; David Lagares; Teresa Gómez del Pulgar; Eva Bandrés; Jesús García-Foncillas; Juan Carlos Lacal

Choline kinase alpha (ChoKalpha) is an enzyme involved in the metabolism of phospholipids recently found to play a relevant role in the regulation of cell proliferation, oncogenic transformation and human carcinogenesis. In addition, this novel oncogene has been recently defined as a prognostic factor in human cancer, and as a promising target for therapy since its specific inhibitors display efficient antitumoral activity in vivo. However, the mechanism by which this enzyme is involved in the regulation of these processes is not yet understood. Using differential microarray analysis, we identify target genes that provide the basis for the understanding of the molecular mechanism for the regulation of cell proliferation and transformation mediated by over-expression of the human ChoKalpha. These results fully support a critical role of this enzyme in the regulation of the G1-->S transition at different levels, and its relevant role in human carcinogenesis. The molecular basis to understand the connection between phospholipids metabolism and cell cycle regulation through choline kinase is reported.


Cancer Research | 2005

Choline Kinase Is a Novel Oncogene that Potentiates RhoA-Induced Carcinogenesis

Ana Ramírez de Molina; David Gallego-Ortega; Jacinto Sarmentero; Mónica Báñez-Coronel; Yolanda Martín-Cantalejo; Juan Carlos Lacal

Choline kinase is overexpressed in human breast, lung, colorectal, and prostate tumors, a finding that suggests the involvement of this enzyme in carcinogenesis. Here we show that overexpression of choline kinase induce oncogenic transformation of human embryo kidney fibroblasts and canine epithelial Madin-Darby canine kidney cells. Choline kinase lays downstream of RhoA signaling and is activated through ROCK kinase, one of the best-characterized RhoA effectors. In keeping with this, coexpression of RhoA and choline kinase potentiates both anchorage independent growth and tumorigenesis. Finally, choline kinase-mediated transformation is sensitive to MN58b, a well-characterized specific choline kinase inhibitor. These results provide the definitive evidence that choline kinase has oncogenic properties and that choline kinase inhibition constitutes a novel valid antitumor strategy.


Molecular Cancer | 2009

Regulation of Akt(ser473) phosphorylation by Choline kinase in breast carcinoma cells

Boon Tin Chua; David Gallego-Ortega; Ana Ramírez de Molina; Axel Ullrich; Juan Carlos Lacal; Julian Downward

BackgroundThe serine/threonine kinase PKB/Akt plays essential role in various cellular processes including cell growth and proliferation, metabolism and cell survival. The importance of the Akt pathway is highlighted by the mutation of various components of the pathway such as the PTEN and PI3-kinase (P110α) in human cancers. In this paper, we employed an RNA interference library targeting all human kinases to screen for kinases involved in the regulation of Akt activation, in particular serine 473 phosphorylation. Here, we transfected the MDA-MB 468 breast cell line with the human kinome siRNA library and measured Akt activation using an antibody specific for phosphoserine 473 of Akt.ResultsThe screen revealed that phosphorylation of Akt(ser473) can be regulated by more than 90 kinases. Interestingly, phosphorylation of Akt(ser473), but not thr308, can be severely reduced by inhibition of Choline kinase activity via siRNA or small molecule inhibitors. We show here that the regulation of Akt phosphorylation by Choline kinase is PI3K-independent. In addition, xenograft tumors treated with Choline kinase inhibitors demonstrated a statistically significant decrease in Akt(ser473) phosphorylation. Importantly, the reduction in phosphorylation correlates with regression of these xenograft tumors in the mouse model.ConclusionHigh Choline kinase expression and activity has previously been implicated in tumor development and metastasis. The mechanism by which Choline kinase is involved in tumor formation is still not fully resolved. From our data, we proposed that Choline kinase plays a key role in regulating Akt(ser473) phosphorylation, thereby promoting cell survival and proliferation.


Development | 2013

Progesterone drives mammary secretory differentiation via RankL-mediated induction of Elf5 in luminal progenitor cells

Heather J. Lee; David Gallego-Ortega; Anita Ledger; Daniel Schramek; Purna A. Joshi; Maria M. Szwarc; Christina Cho; John P. Lydon; Rama Khokha; Josef M. Penninger; Christopher J. Ormandy

Progesterone-RankL paracrine signaling has been proposed as a driver of stem cell expansion in the mammary gland, and Elf5 is essential for the differentiation of mammary epithelial progenitor cells. We demonstrate that Elf5 expression is induced by progesterone and that Elf5 and progesterone cooperate to promote alveolar development. The progesterone receptor and Elf5 are expressed in a mutually exclusive pattern, and we identify RankL as the paracrine mediator of the effects of progesterone on Elf5 expression in CD61+ progenitor cells and their consequent differentiation. Blockade of RankL action prevented progesterone-induced side branching and the expansion of Elf5+ mature luminal cells. These findings describe a mechanism by which steroid hormones can produce the expansion of steroid hormone receptor-negative mammary epithelial cells.


Science Translational Medicine | 2017

Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis

Claire Vennin; Venessa T. Chin; Sean C. Warren; Morghan C. Lucas; David Herrmann; Astrid Magenau; Pauline Mélénec; Stacey N. Walters; Gonzalo del Monte-Nieto; James R.W. Conway; Max Nobis; Amr H. Allam; Rachael A. McCloy; Nicola Currey; Mark Pinese; Alice Boulghourjian; Anaiis Zaratzian; Arne A. S. Adam; Celine Heu; Adnan Nagrial; Angela Chou; Angela Steinmann; Alison Drury; Danielle Froio; Marc Giry-Laterriere; Nathanial L. E. Harris; Tri Giang Phan; Rohit Jain; Wolfgang Weninger; Ewan J. McGhee

Fine-tuned manipulation of tumor tension and vasculature enhances response to chemotherapy and impairs metastatic spread in pancreatic cancer. ROCK-ing pancreatic cancer to the core Pancreatic cancer, one of the most deadly and difficult-to-treat tumor types in patients, usually has a dense stroma that can be difficult for drugs to penetrate. Stromal characteristics can also affect multiple other aspects of tumor biology, including metastatic spread, vascular supply, and immune response. Vennin et al. used Fasudil, a drug that inhibits a protein called ROCK and is already used for some conditions in people, to demonstrate the feasibility including short-term tumor stroma remodeling as part of cancer treatment. In genetically engineered and patient-derived mouse models of pancreatic cancer, priming with Fasudil disrupted the tumors’ extracellular matrix and improved the effectiveness of subsequent treatment with standard-of-care chemotherapy for this disease. The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or “priming,” using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer.


PLOS Biology | 2012

ELF5 suppresses estrogen sensitivity and underpins the acquisition of antiestrogen resistance in luminal breast cancer

Maria Kalyuga; David Gallego-Ortega; Heather J. Lee; Daniel Roden; Mark J. Cowley; C. Elizabeth Caldon; Andrew Stone; Stephanie L. Allerdice; Fátima Valdés-Mora; Rosalind Launchbury; Aaron L. Statham; Nicola J. Armstrong; M. Chehani Alles; Adelaide Young; Andrea Egger; Wendy Wing Yee Au; Catherine Piggin; Cara J. Evans; Anita Ledger; Tilman Brummer; Samantha R. Oakes; Warren Kaplan; Julia Margaret Wendy Gee; Robert Ian Nicholson; Robert L. Sutherland; Alexander Swarbrick; Matthew J. Naylor; Susan J. Clark; Jason S. Carroll; Christopher J. Ormandy

The transcription factor ELF5 is responsible for gene expression patterning underlying molecular subtypes of breast cancer and may mediate acquired resistance to anti-estrogen therapy.


Advances in Enzyme Regulation | 2011

Involvement of human choline kinase alpha and beta in carcinogenesis: A different role in lipid metabolism and biological functions

David Gallego-Ortega; Teresa Gómez del Pulgar; Fátima Valdés-Mora; Arancha Cebrián; Juan Carlos Lacal

We have summarized here the importance of ChoKα1 in human carcinogenesis. ChoKα1 displays its oncogenic activity through activation of specific signaling pathways that influence on cell proliferation and survival. It is overexpressed in a large number of human tumors with an incidence of 40-60% of all tumors investigated. Currently, there is an active effort in the development of strategies to knockdown the activity of ChoKα through specific siRNA or small molecules inhibitors. Results from genetic silencing or from treatment with MN58b, a well characterized ChoKα inhibitor showing antiproliferative and antitumoral effect in mice xenografts, provide strong support to this concept, indicating that the design of new antitumoral drugs must be selective against this isoform. However, affecting the other two known isoforms of ChoK may have also therapeutic consequences since the physiologically active form of ChoK may be constituted by homo or heterodimers. Furthermore, alteration of the ChoKβ activity might lead to a change in the lipid content of the cells of particular tissues such as skeletal muscle as described in the ChoKβ null mice (Sher et al., 2006). Finally, the identification of the ChoKα1 isoform as an excellent novel tool for the diagnosis and prognosis of cancer patients may have clinical consequences of immediate usefulness. On one hand, the use of specific monoclonal antibodies against ChoKα1 as a tool for diagnosis in paraffin embedded samples from patient biopsies, through standard immunohistochemistry techniques, can now be achieved (Gallego-Ortega et al., 2006). On the other hand, it has been recently described the prognostic value of determination of ChoKα1 expression levels in non-small cell lung cancer using real time quantitative PCR technology (Ramírez de Molina et al., 2007). Therefore, further research should be supported on the utility of ChoK isoforms as a promising area to improve cancer diagnosis and treatment.


Cancer Research | 2013

Involvement of Lyn and the Atypical Kinase SgK269/PEAK1 in a Basal Breast Cancer Signaling Pathway

David R. Croucher; Falko Hochgräfe; Luxi Zhang; Ling Liu; Ruth J. Lyons; Danny Rickwood; Carole M Tactacan; Brigid C. Browne; Navied Ali; Howard Cheuk Ho Chan; Robert F. Shearer; David Gallego-Ortega; Darren N. Saunders; Alexander Swarbrick; Roger J. Daly

Basal breast cancer cells feature high expression of the Src family kinase Lyn that has been implicated in the pathogenicity of this disease. In this study, we identified novel Lyn kinase substrates, the most prominent of which was the atypical kinase SgK269 (PEAK1). In breast cancer cells, SgK269 expression associated with the basal phenotype. In primary breast tumors, SgK269 overexpression was detected in a subset of basal, HER2-positive, and luminal cancers. In immortalized MCF-10A mammary epithelial cells, SgK269 promoted transition to a mesenchymal phenotype and increased cell motility and invasion. Growth of MCF-10A acini in three-dimensional (3D) culture was enhanced upon SgK269 overexpression, which induced an abnormal, multilobular acinar morphology and promoted extracellular signal-regulated kinase (Erk) and Stat3 activation. SgK269 Y635F, mutated at a major Lyn phosphorylation site, did not enhance acinar size or cellular invasion. We show that Y635 represents a Grb2-binding site that promotes both Stat3 and Erk activation in 3D culture. RNA interference-mediated attenuation of SgK269 in basal breast cancer cells promoted acquisition of epithelial characteristics and decreased anchorage-independent growth. Together, our results define a novel signaling pathway in basal breast cancer involving Lyn and SgK269 that offers clinical opportunities for therapeutic intervention.

Collaboration


Dive into the David Gallego-Ortega's collaboration.

Top Co-Authors

Avatar

Christopher J. Ormandy

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Fátima Valdés-Mora

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Juan Carlos Lacal

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Andrew M. K. Law

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Samantha R. Oakes

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine Piggin

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

David Herrmann

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Susan J. Clark

Garvan Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge