Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fátima Valdés-Mora is active.

Publication


Featured researches published by Fátima Valdés-Mora.


Genome Research | 2012

Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer

Fátima Valdés-Mora; Jenny Z. Song; Aaron L. Statham; Dario Strbenac; Mark D. Robinson; Shalima S. Nair; Kate I. Patterson; David J. Tremethick; Clare Stirzaker; Susan J. Clark

Histone H2A.Z (H2A.Z) is an evolutionarily conserved H2A variant implicated in the regulation of gene expression; however, its role in transcriptional deregulation in cancer remains poorly understood. Using genome-wide studies, we investigated the role of promoter-associated H2A.Z and acetylated H2A.Z (acH2A.Z) in gene deregulation and its relationship with DNA methylation and H3K27me3 in prostate cancer. Our results reconcile the conflicting reports of positive and negative roles for histone H2A.Z and gene expression states. We find that H2A.Z is enriched in a bimodal distribution at nucleosomes, surrounding the transcription start sites (TSSs) of both active and poised gene promoters. In addition, H2A.Z spreads across the entire promoter of inactive genes in a deacetylated state. In contrast, acH2A.Z is only localized at the TSSs of active genes. Gene deregulation in cancer is also associated with a reorganization of acH2A.Z and H2A.Z nucleosome occupancy across the promoter region and TSS of genes. Notably, in cancer cells we find that a gain of acH2A.Z at the TSS occurs with an overall decrease of H2A.Z levels, in concert with oncogene activation. Furthermore, deacetylation of H2A.Z at TSSs is increased with silencing of tumor suppressor genes. We also demonstrate that acH2A.Z anti-correlates with promoter H3K27me3 and DNA methylation. We show for the first time, that acetylation of H2A.Z is a key modification associated with gene activity in normal cells and epigenetic gene deregulation in tumorigenesis.


PLOS ONE | 2009

Differential Role of Human Choline Kinase α and β Enzymes in Lipid Metabolism: Implications in Cancer Onset and Treatment

David Gallego-Ortega; Ana Ramírez de Molina; Maria Angeles Ramos; Fátima Valdés-Mora; María G. Barderas; Jacinto Sarmentero-Estrada; Juan Carlos Lacal

Background The Kennedy pathway generates phosphocoline and phosphoethanolamine through its two branches. Choline Kinase (ChoK) is the first enzyme of the Kennedy branch of synthesis of phosphocholine, the major component of the plasma membrane. ChoK family of proteins is composed by ChoKα and ChoKβ isoforms, the first one with two different variants of splicing. Recently ChoKα has been implicated in the carcinogenic process, since it is over-expressed in a variety of human cancers. However, no evidence for a role of ChoKβ in carcinogenesis has been reported. Methodology/Principal Findings Here we compare the in vitro and in vivo properties of ChoKα1 and ChoKβ in lipid metabolism, and their potential role in carcinogenesis. Both ChoKα1 and ChoKβ showed choline and ethanolamine kinase activities when assayed in cell extracts, though with different affinity for their substrates. However, they behave differentially when overexpressed in whole cells. Whereas ChoKβ display an ethanolamine kinase role, ChoKα1 present a dual choline/ethanolamine kinase role, suggesting the involvement of each ChoK isoform in distinct biochemical pathways under in vivo conditions. In addition, while overexpression of ChoKα1 is oncogenic when overexpressed in HEK293T or MDCK cells, ChoKβ overexpression is not sufficient to induce in vitro cell transformation nor in vivo tumor growth. Furthermore, a significant upregulation of ChoKα1 mRNA levels in a panel of breast and lung cancer cell lines was found, but no changes in ChoKβ mRNA levels were observed. Finally, MN58b, a previously described potent inhibitor of ChoK with in vivo antitumoral activity, shows more than 20-fold higher efficiency towards ChoKα1 than ChoKβ. Conclusion/Significance This study represents the first evidence of the distinct metabolic role of ChoKα and ChoKβ isoforms, suggesting different physiological roles and implications in human carcinogenesis. These findings constitute a step forward in the design of an antitumoral strategy based on ChoK inhibition.


PLOS Biology | 2012

ELF5 suppresses estrogen sensitivity and underpins the acquisition of antiestrogen resistance in luminal breast cancer

Maria Kalyuga; David Gallego-Ortega; Heather J. Lee; Daniel Roden; Mark J. Cowley; C. Elizabeth Caldon; Andrew Stone; Stephanie L. Allerdice; Fátima Valdés-Mora; Rosalind Launchbury; Aaron L. Statham; Nicola J. Armstrong; M. Chehani Alles; Adelaide Young; Andrea Egger; Wendy Wing Yee Au; Catherine Piggin; Cara J. Evans; Anita Ledger; Tilman Brummer; Samantha R. Oakes; Warren Kaplan; Julia Margaret Wendy Gee; Robert Ian Nicholson; Robert L. Sutherland; Alexander Swarbrick; Matthew J. Naylor; Susan J. Clark; Jason S. Carroll; Christopher J. Ormandy

The transcription factor ELF5 is responsible for gene expression patterning underlying molecular subtypes of breast cancer and may mediate acquired resistance to anti-estrogen therapy.


Advances in Enzyme Regulation | 2011

Involvement of human choline kinase alpha and beta in carcinogenesis: A different role in lipid metabolism and biological functions

David Gallego-Ortega; Teresa Gómez del Pulgar; Fátima Valdés-Mora; Arancha Cebrián; Juan Carlos Lacal

We have summarized here the importance of ChoKα1 in human carcinogenesis. ChoKα1 displays its oncogenic activity through activation of specific signaling pathways that influence on cell proliferation and survival. It is overexpressed in a large number of human tumors with an incidence of 40-60% of all tumors investigated. Currently, there is an active effort in the development of strategies to knockdown the activity of ChoKα through specific siRNA or small molecules inhibitors. Results from genetic silencing or from treatment with MN58b, a well characterized ChoKα inhibitor showing antiproliferative and antitumoral effect in mice xenografts, provide strong support to this concept, indicating that the design of new antitumoral drugs must be selective against this isoform. However, affecting the other two known isoforms of ChoK may have also therapeutic consequences since the physiologically active form of ChoK may be constituted by homo or heterodimers. Furthermore, alteration of the ChoKβ activity might lead to a change in the lipid content of the cells of particular tissues such as skeletal muscle as described in the ChoKβ null mice (Sher et al., 2006). Finally, the identification of the ChoKα1 isoform as an excellent novel tool for the diagnosis and prognosis of cancer patients may have clinical consequences of immediate usefulness. On one hand, the use of specific monoclonal antibodies against ChoKα1 as a tool for diagnosis in paraffin embedded samples from patient biopsies, through standard immunohistochemistry techniques, can now be achieved (Gallego-Ortega et al., 2006). On the other hand, it has been recently described the prognostic value of determination of ChoKα1 expression levels in non-small cell lung cancer using real time quantitative PCR technology (Ramírez de Molina et al., 2007). Therefore, further research should be supported on the utility of ChoK isoforms as a promising area to improve cancer diagnosis and treatment.


PLOS ONE | 2012

Tamoxifen-induced epigenetic silencing of oestrogen-regulated genes in anti-hormone resistant breast cancer.

Andrew Stone; Fátima Valdés-Mora; Julia Margaret Wendy Gee; Lynne Farrow; Richard Andrew McClelland; Heidi Fiegl; Carol Mary Dutkowski; Rachael A. McCloy; Robert L. Sutherland; Elizabeth A. Musgrove; Robert Ian Nicholson

In the present study, we have taken the novel approach of using an in vitro model representative of tamoxifen-withdrawal subsequent to clinical relapse to achieve a greater understanding of the mechanisms that serve to maintain the resistant-cell phenotype, independent of any agonistic impact of tamoxifen, to identify potential novel therapeutic approaches for this disease state. Following tamoxifen withdrawal, tamoxifen-resistant MCF-7 cells conserved both drug resistance and an increased basal rate of proliferation in an oestrogen deprived environment, despite reduced epidermal growth-factor receptor expression and reduced sensitivity to gefitinib challenge. Although tamoxifen-withdrawn cells retained ER expression, a sub-set of ER-responsive genes, including pS2 and progesterone receptor (PgR), were down-regulated by promoter DNA methylation, as confirmed by clonal bisulphite sequencing experiments. Following promoter demethylation with 5-Azacytidine (5-Aza), the co-addition of oestradiol (E2) restored gene expression in these cells. In addition, 5-Aza/E2 co-treatment induced a significant anti-proliferative effect in the tamoxifen-withdrawn cells, in-contrast to either agent used alone. Microarray analysis was undertaken to identify genes specifically up regulated by this co-treatment. Several anti-proliferative gene candidates were identified and their promoters were confirmed as more heavily methylated in the tamoxifen resistant vs sensitive cells. One such gene candidate, growth differentiation factor 15 (GDF15), was carried forward for functional analysis. The addition of 5-Aza/E2 was sufficient to de-methylate and activate GDF15 expression in the tamoxifen resistant cell-lines, whilst in parallel, treatment with recombinant GDF15 protein decreased cell survival. These data provide evidence to support a novel concept that long-term tamoxifen exposure induces epigenetic silencing of a cohort of oestrogen-responsive genes whose function is associated with negative proliferation control. Furthermore, reactivation of such genes using epigenetic drugs could provide a potential therapeutic avenue for the management of tamoxifen-resistant breast cancer.


Molecular Cancer Therapeutics | 2013

BCL-2 Hypermethylation Is a Potential Biomarker of Sensitivity to Antimitotic Chemotherapy in Endocrine-Resistant Breast Cancer

Andrew Stone; Mark J. Cowley; Fátima Valdés-Mora; Rachael A. McCloy; Claudio Marcelo Sergio; David Gallego-Ortega; C. E. Caldon; Christopher J. Ormandy; Andrew V. Biankin; Julia Margaret Wendy Gee; Robert Ian Nicholson; Cristin G. Print; Susan J. Clark; Elizabeth A. Musgrove

Overexpression of the antiapoptotic factor BCL-2 is a frequent feature of malignant disease and is commonly associated with poor prognosis and resistance to conventional chemotherapy. In breast cancer, however, high BCL-2 expression is associated with favorable prognosis, estrogen receptor (ER) positivity, and low tumor grade, whereas low expression is included in several molecular signatures associated with resistance to endocrine therapy. In the present study, we correlate BCL-2 expression and DNA methylation profiles in human breast cancer and in multiple cell models of acquired endocrine resistance to determine whether BCL-2 hypermethylation could provide a useful biomarker of response to cytotoxic therapy. In human disease, diminished expression of BCL-2 was associated with hypermethylation of the second exon, in a region that overlapped a CpG island and an ER-binding site. Hypermethylation of this region, which occurred in 10% of primary tumors, provided a stronger predictor of patient survival (P = 0.019) when compared with gene expression (n = 522). In multiple cell models of acquired endocrine resistance, BCL-2 expression was significantly reduced in parallel with increased DNA methylation of the exon 2 region. The reduction of BCL-2 expression in endocrine-resistant cells lowered their apoptotic threshold to antimitotic agents: nocodazole, paclitaxel, and the PLK1 inhibitor BI2536. This phenomenon could be reversed with ectopic expression of BCL-2, and rescued with the BCL-2 inhibitor ABT-737. Collectively, these data imply that BCL-2 hypermethylation provides a robust biomarker of response to current and next-generation cytotoxic agents in endocrine-resistant breast cancer, which may prove beneficial in directing therapeutic strategy for patients with nonresectable, metastatic disease. Mol Cancer Ther; 12(9); 1874–85. ©2013 AACR.


Stem Cells | 2011

Lineage Specific Methylation of the Elf5 Promoter in Mammary Epithelial Cells

Heather J. Lee; Rebecca A. Hinshelwood; Toula Bouras; David Gallego-Ortega; Fátima Valdés-Mora; Katrina Blazek; Jane E. Visvader; Susan J. Clark; Christopher J. Ormandy

Recent characterization of mammary stem and progenitor cells has improved our understanding of the transcriptional network that coordinates mammary development; however, little is known about the mechanisms that enforce lineage commitment and prevent transdifferentiation in the mammary gland. The E‐twenty six transcription factor Elf5 forces the differentiation of mammary luminal progenitor cells to establish the milk producing alveolar lineage. Methylation of the Elf5 promoter has been proposed to act as a lineage gatekeeper during embryonic development. We used bisulphite sequencing to investigate in detail whether Elf5 promoter methylation plays a role in lineage commitment during mammary development. An increase in Elf5 expression was associated with decreasing Elf5 promoter methylation in differentiating HC11 mammary cells. Similarly, purified mammary epithelial cells from mice had increased Elf5 expression and decreased promoter methylation during pregnancy. Finally, analysis of epithelial subpopulations revealed that the Elf5 promoter is methylated and silenced in the basal, stem cell‐containing population relative to luminal cells. These results demonstrate that Elf5 promoter methylation is lineage‐specific and developmentally regulated in the mammary gland in vivo, and suggest that loss of Elf5 methylation specifies the mammary luminal lineage, while continued Elf5 methylation maintains the stem cell and myoepithelial lineages. STEM CELLS 2011;29:1611–1619


Oncogene | 2015

Prostate cancer epigenetic biomarkers: next-generation technologies

Fátima Valdés-Mora; Susan J. Clark

Cancer is caused by a combination of genetic alterations and gross changes to the epigenetic landscape that together result in aberrant cancer gene regulation. Therefore, we need to fully sequence both the cancer genome and the matching cancer epigenomes before we can fully integrate the suite of molecular mechanisms involved in initiation and progression of cancer. A further understanding of epigenetic aberrations has a great potential in the next era of molecular genomic pathology in cancer detection and treatment in all types of cancer, including prostate cancer. In this review, we discuss the most common epigenetic aberrations identified in prostate cancer with the biomarker potential. We also describe the innovative and current epigenomic technologies used for the identification of epigenetic-associated changes in prostate cancer and future translational applications in molecular pathology for cancer detection and prognosis.


PLOS Biology | 2015

ELF5 drives lung metastasis in luminal breast cancer through recruitment of Gr1+ CD11b+ myeloid-derived suppressor cells

David Gallego-Ortega; Anita Ledger; Daniel Roden; Andrew M. K. Law; Astrid Magenau; Zoya Kikhtyak; Christina Cho; Stephanie L. Allerdice; Heather J. Lee; Fátima Valdés-Mora; David Herrmann; Robert Salomon; Adelaide I. J. Young; Brian Y. Lee; C. Marcelo Sergio; Warren Kaplan; Catherine Piggin; James R.W. Conway; Brian Rabinovich; Ewan K.A. Millar; Samantha R. Oakes; Tatyana Chtanova; Alexander Swarbrick; Matthew J. Naylor; Sandra A. O’Toole; Andrew R. Green; Paul Timpson; Julia Margaret Wendy Gee; Ian O. Ellis; Susan J. Clark

During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT) model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in primary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived suppressor cells, a group of immature neutrophils recently identified as mediators of vasculogenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis and metastasis. Expression signatures in luminal A breast cancers indicated that increased myeloid cell invasion and inflammation were correlated with ELF5 expression, and increased ELF5 immunohistochemical staining predicted much shorter metastasis–free and overall survival of luminal A patients, defining a group who experienced unexpectedly early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been previously implicated in the development of antiestrogen resistance, this finding implicates ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in luminal A breast cancer.


Nature Communications | 2017

Acetylated histone variant H2A.Z is involved in the activation of neo-enhancers in prostate cancer

Fátima Valdés-Mora; Cathryn M. Gould; Yolanda Colino-Sanguino; Wenjia Qu; Jenny Z. Song; Kylie M. Taylor; Fabian A. Buske; Aaron L. Statham; Shalima S. Nair; Nicola J. Armstrong; James G. Kench; Kenneth Lee; Lisa G. Horvath; Minru Qiu; Alexei Ilinykh; Nicole S. Yeo-Teh; David Gallego-Ortega; Clare Stirzaker; Susan J. Clark

Acetylation of the histone variant H2A.Z (H2A.Zac) occurs at active promoters and is associated with oncogene activation in prostate cancer, but its role in enhancer function is still poorly understood. Here we show that H2A.Zac containing nucleosomes are commonly redistributed to neo-enhancers in cancer resulting in a concomitant gain of chromatin accessibility and ectopic gene expression. Notably incorporation of acetylated H2A.Z nucleosomes is a pre-requisite for activation of Androgen receptor (AR) associated enhancers. H2A.Zac nucleosome occupancy is rapidly remodeled to flank the AR sites to initiate the formation of nucleosome-free regions and the production of AR-enhancer RNAs upon androgen treatment. Remarkably higher levels of global H2A.Zac correlate with poorer prognosis. Altogether these data demonstrate the novel contribution of H2A.Zac in activation of newly formed enhancers in prostate cancer.Acetylation of the histone variant H2A.Z at gene promoters is associated with oncogene activation; however, it is unclear if such modification has a role in regulating the function of enhancers. Here the authors show that acetylated H2A.Z is redistributed at cancer neo-enhancers and regulates the activity of specific enhancers of cancer-related genes.

Collaboration


Dive into the Fátima Valdés-Mora's collaboration.

Top Co-Authors

Avatar

David Gallego-Ortega

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Susan J. Clark

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Juan Carlos Lacal

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teresa Gómez del Pulgar

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Aaron L. Statham

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Andrew Stone

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Clare Stirzaker

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge