Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Gisselsson is active.

Publication


Featured researches published by David Gisselsson.


Nature Genetics | 2011

Mutations in CEP57 cause mosaic variegated aneuploidy syndrome

Katie Snape; Sandra Hanks; Elise Ruark; Patricio Barros-Núñez; Anna Elliott; Anne Murray; Andrew H Lane; Nora Shannon; Patrick Callier; David Chitayat; Jill Clayton-Smith; David Fitzpatrick; David Gisselsson; Sébastien Jacquemont; Keiko Asakura-Hay; Mark Micale; John Tolmie; Peter D. Turnpenny; Michael Wright; Jenny Douglas; Nazneen Rahman

Using exome sequencing and a variant prioritization strategy that focuses on loss-of-function variants, we identified biallelic, loss-of-function CEP57 mutations as a cause of constitutional mosaic aneuploidies. CEP57 is a centrosomal protein and is involved in nucleating and stabilizing microtubules. Our findings indicate that these and/or additional functions of CEP57 are crucial for maintaining correct chromosomal number during cell division.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis

David Gisselsson; Yuesheng Jin; David Lindgren; Johan Persson; Lennart Gisselsson; Sandra Hanks; Daniel Sehic; Linda Holmquist Mengelbier; Ingrid Øra; Nazneen Rahman; Fredrik Mertens; Felix Mitelman; Nils Mandahl

One extra chromosome copy (i.e., trisomy) is the most common type of chromosome aberration in cancer cells. The mechanisms behind the generation of trisomies in tumor cells are largely unknown, although it has been suggested that dysfunction of the spindle assembly checkpoint (SAC) leads to an accumulation of trisomies through failure to correctly segregate sister chromatids in successive cell divisions. By using Wilms tumor as a model for cancers with trisomies, we now show that trisomic cells can form even in the presence of a functional SAC through tripolar cell divisions in which sister chromatid separation proceeds in a regular fashion, but cytokinesis failure nevertheless leads to an asymmetrical segregation of chromosomes into two daughter cells. A model for the generation of trisomies by such asymmetrical cell division accurately predicted several features of clones having extra chromosomes in vivo, including the ratio between trisomies and tetrasomies and the observation that different trisomies found in the same tumor occupy identical proportions of cells and colocalize in tumor tissue. Our findings provide an experimentally validated model explaining how multiple trisomies can occur in tumor cells that still maintain accurate sister chromatid separation at metaphase–anaphase transition and thereby physiologically satisfy the SAC.


Genes, Chromosomes and Cancer | 2012

Copy number defects of G1-cell cycle genes in neuroblastoma are frequent and correlate with high expression of E2F target genes and a poor prognosis.

Jan J. Molenaar; Jan Koster; Marli E. Ebus; Peter van Sluis; Ellen M. Westerhout; Katleen De Preter; David Gisselsson; Iingrid Øra; Franki Speleman; Huib N. Caron; Rogier Versteeg

The tightly controlled network of cell cycle genes consists of a core of cyclin dependent kinases (CDKs) that are activated by periodically expressed cyclins. The activity of the cyclin‐CDK complexes is regulated by cyclin dependent kinase inhibitors (CDKIs) and multiple signal transduction routes that converge on the cell cycle. Neuroblastoma are pediatric tumors that belong to the group of small round blue cell tumors, characterized by a fast proliferation. Here, we present high throughput analyses of cell cycle regulating genes in neuroblastoma. We analyzed a series of 82 neuroblastomas by comparative genomic hybridization arrays, single nucleotide polymorphism arrays, and Affymetrix expression arrays and analyzed the datasets in parallel with the R2 bioinformatic tool (http://r2.amc.nl). About 30% of the tumors had genomic amplifications, gains, or losses with shortest regions of overlap that suggested implication of a series of G1 cell cycle regulating genes. CCND1 (cyclin D1) and CDK4 were amplified or gained and the chromosomal regions containing the CDKN2 (INK4) group of CDKIs were frequently deleted. Cluster analysis showed that tumors with genomic aberrations in G1 regulating genes over‐expressed E2F target genes, which regulate S and G2/M phase progression. These tumors have a poor prognosis. Our findings suggest that pharmacological inhibition of cell cycle genes might bear therapeutic promises for patients with high risk neuroblastoma.


Oncogene | 2012

Oncogenic activation of FOXR1 by 11q23 intrachromosomal deletion-fusions in neuroblastoma

Evan E. Santo; Marli E. Ebus; Jan Koster; Johannes H. Schulte; Arjan Lakeman; P van Sluis; Joëlle Vermeulen; David Gisselsson; Ingrid Øra; Sven Lindner; Patrick G. Buckley; Raymond L. Stallings; Jo Vandesompele; Angelika Eggert; Huib N. Caron; Rogier Versteeg; Jan J. Molenaar

Neuroblastoma tumors frequently show loss of heterozygosity of chromosome 11q with a shortest region of overlap in the 11q23 region. These deletions are thought to cause inactivation of tumor suppressor genes leading to haploinsufficiency. Alternatively, micro-deletions could lead to gene fusion products that are tumor driving. To identify such events we analyzed a series of neuroblastomas by comparative genomic hybridization and single-nucleotide polymorphism arrays and integrated these data with Affymetrix mRNA profiling data with the bioinformatic tool R2 (http://r2.amc.nl). We identified three neuroblastoma samples with small interstitial deletions at 11q23, upstream of the forkhead-box R1 transcription factor (FOXR1). Genes at the proximal side of the deletion were fused to FOXR1, resulting in fusion transcripts of MLL–FOXR1 and PAFAH1B2–FOXR1. FOXR1 expression has only been detected in early embryogenesis. Affymetrix microarray analysis showed high FOXR1 mRNA expression exclusively in the neuroblastomas with micro-deletions and rare cases of other tumor types, including osteosarcoma cell line HOS. RNAi silencing of FOXR1 strongly inhibited proliferation of HOS cells and triggered apoptosis. Expression profiling of these cells and reporter assays suggested that FOXR1 is a negative regulator of fork-head box factor-mediated transcription. The neural crest stem cell line JoMa1 proliferates in culture conditional to activity of a MYC-ER transgene. Over-expression of the wild-type FOXR1 could functionally replace MYC and drive proliferation of JoMa1. We conclude that FOXR1 is recurrently activated in neuroblastoma by intrachromosomal deletion/fusion events, resulting in overexpression of fusion transcripts. Forkhead-box transcription factors have not been previously implicated in neuroblastoma pathogenesis. Furthermore, this is the first identification of intrachromosomal fusion genes in neuroblastoma.


Nature Reviews Genetics | 2017

Mosaicism in health and disease — clones picking up speed

Lars Forsberg; David Gisselsson; Jan P. Dumanski

Post-zygotic variation refers to genetic changes that arise in the soma of an individual and that are not usually inherited by the next generation. Although there is a paucity of research on such variation, emerging studies show that it is common: individuals are complex mosaics of genetically distinct cells, to such an extent that no two somatic cells are likely to have the exact same genome. Although most types of mutation can be involved in post-zygotic variation, structural genetic variants are likely to leave the largest genomic footprint. Somatic variation has diverse physiological roles and pathological consequences, particularly when acquired variants influence the clonal trajectories of the affected cells. Post-zygotic variation is an important confounder in medical genetic testing and a promising avenue for research: future studies could involve analyses of sorted and single cells from multiple tissue types to fully explore its potential.


Nature Communications | 2015

Intratumoral genome diversity parallels progression and predicts outcome in pediatric cancer

Linda Holmquist Mengelbier; Jenny Karlsson; David Lindgren; Anders Valind; Henrik Lilljebjörn; Caroline Jansson; Daniel Bexell; Noémie Braekeveldt; Adam Ameur; Tord Jonson; Hanna Göransson Kultima; Anders Isaksson; Jurate Asmundsson; Rogier Versteeg; Marianne Rissler; Thoas Fioretos; Bengt Sandstedt; Anna Börjesson; Torbjörn Backman; Niklas Pal; Ingrid Øra; Markus Mayrhofer; David Gisselsson

Genetic differences among neoplastic cells within the same tumour have been proposed to drive cancer progression and treatment failure. Whether data on intratumoral diversity can be used to predict clinical outcome remains unclear. We here address this issue by quantifying genetic intratumoral diversity in a set of chemotherapy-treated childhood tumours. By analysis of multiple tumour samples from seven patients we demonstrate intratumoral diversity in all patients analysed after chemotherapy, typically presenting as multiple clones within a single millimetre-sized tumour sample (microdiversity). We show that microdiversity often acts as the foundation for further genome evolution in metastases. In addition, we find that microdiversity predicts poor cancer-specific survival (60%; P=0.009), independent of other risk factors, in a cohort of 44 patients with chemotherapy-treated childhood kidney cancer. Survival was 100% for patients lacking microdiversity. Thus, intratumoral genetic diversity is common in childhood cancers after chemotherapy and may be an important factor behind treatment failure.


Genes, Chromosomes and Cancer | 2011

Alternative lengthening of telomeres—An enhanced chromosomal instability in aggressive non‐MYCN amplified and telomere elongated neuroblastomas

Gisela Lundberg; Daniel Sehic; John-Kalle Länsberg; Ingrid Øra; Attila Frigyesi; Victoria Castel; Samuel Navarro; Marta Piqueras; Tommy Martinsson; Rosa Noguera; David Gisselsson

Telomere length alterations are known to cause genomic instability and influence clinical course in several tumor types, but have been little investigated in neuroblastoma (NB), one of the most common childhood tumors. In the present study, telomere‐dependent chromosomal instability and telomere length were determined in six NB cell lines and fifty tumor biopsies. The alternative lengthening of telomeres (ALT) pathway was assayed by scoring ALT‐associated promyelocytic leukemia (PML) bodies (APBs). We found a reduced probability of overall survival for tumors with increased telomere length compared to cases with reduced or unchanged telomere length. In non‐MYCN amplified tumors, a reduced or unchanged telomere length was associated with 100% overall survival. Tumor cells with increased telomere length had an elevated frequency of APBs, consistent with activation of the ALT pathway. The vast majority of tumor biopsies and cell lines exhibited an elevated rate of anaphase bridges, suggesting telomere‐dependent chromosomal instability. This was more pronounced in tumors with increased telomere length. In cell lines, there was a close correlation between lack of telomere‐protective TTAGGG‐repeats, anaphase bridging, and remodeling of oncogene sequences. Thus, telomere‐dependent chromosomal instability is highly prevalent in NB, and may contribute to the complexity of genomic alterations as well as therapy resistance in the absence of MYCN amplification and in this tumor type.


Journal of Clinical Oncology | 2016

Gain of 1q As a Prognostic Biomarker in Wilms Tumors (WTs) Treated With Preoperative Chemotherapy in the International Society of Paediatric Oncology (SIOP) WT 2001 Trial: A SIOP Renal Tumours Biology Consortium Study

Tasnim Chagtai; Christina Zill; Linda Dainese; Jenny Wegert; Suvi Savola; Sergey Popov; William Mifsud; Gordan Vujanic; Nj Sebire; Yves Le Bouc; Peter F. Ambros; Leo Kager; Maureen J. O'Sullivan; Annick Blaise; Christophe Bergeron; Linda Holmquist Mengelbier; David Gisselsson; Marcel Kool; Godelieve A.M. Tytgat; Marry M. van den Heuvel-Eibrink; Norbert Graf; Harm van Tinteren; Aurore Coulomb; Manfred Gessler; Richard D. Williams; Kathy Pritchard-Jones

Purpose Wilms tumor (WT) is the most common pediatric renal tumor. Treatment planning under International Society of Paediatric Oncology (SIOP) protocols is based on staging and histologic assessment of response to preoperative chemotherapy. Despite high overall survival (OS), many relapses occur in patients without specific risk factors, and many successfully treated patients are exposed to treatments with significant risks of late effects. To investigate whether molecular biomarkers could improve risk stratification, we assessed 1q status and other potential copy number biomarkers in a large WT series. Materials and Methods WT nephrectomy samples from 586 SIOP WT 2001 patients were analyzed using a multiplex ligation-dependent probe amplification (MLPA) assay that measured the copy number of 1q and other regions of interest. Results One hundred sixty-seven (28%) of 586 WTs had 1q gain. Five-year event-free survival (EFS) was 75.0% in patients with 1q gain (95% CI, 68.5% to 82.0%) and 88.2% in patients without gain (95% CI, 85.0% to 91.4%). OS was 88.4% with gain (95% CI, 83.5% to 93.6%) and 94.4% without gain (95% CI, 92.1% to 96.7%). In univariable analysis, 1q gain was associated with poorer EFS (P < .001; hazard ratio, 2.33) and OS (P = .01; hazard ratio, 2.16). The association of 1q gain with poorer EFS retained significance in multivariable analysis adjusted for 1p and 16q loss, sex, stage, age, and histologic risk group. Gain of 1q remained associated with poorer EFS in tumor subsets limited to either intermediate-risk localized disease or nonanaplastic localized disease. Other notable aberrations associated with poorer EFS included MYCN gain and TP53 loss. Conclusion Gain of 1q is a potentially valuable prognostic biomarker in WT, in addition to histologic response to preoperative chemotherapy and tumor stage.


Laboratory Investigation | 2015

Gene fusion detection in formalin-fixed paraffin-embedded benign fibrous histiocytomas using fluorescence in situ hybridization and RNA sequencing

Charles Walther; Jakob Hofvander; Jenny Nilsson; Linda Magnusson; Henryk A. Domanski; David Gisselsson; Johnbosco Tayebwa; Leona A. Doyle; Christopher D. M. Fletcher; Fredrik Mertens

Benign fibrous histiocytomas (FH) can be subdivided into several morphological and clinical subgroups. Recently, gene fusions involving either one of two protein kinase C genes (PRKCB and PRKCD) or the ALK gene were described in FH. We here wanted to evaluate the frequency of PRKCB and PRKCD gene fusions in FH. Using interphase fluorescence in situ hybridization on sections from formalin-fixed paraffin-embedded (FFPE) tumors, 36 cases could be analyzed. PRKCB or PRKCD rearrangements were seen in five tumors: 1/7 regular, 0/3 aneurysmal, 0/6 cellular, 2/7 epithelioid, 0/1 atypical, 2/10 deep, and 0/2 metastatic lesions. We also evaluated the status of the ALK gene in selected cases, finding rearrangements in 3/7 epithelioid and 0/1 atypical lesions. To assess the gene fusion status of FH further, deep sequencing of RNA (RNA-Seq) was performed on FFPE tissue from eight cases with unknown gene fusion status, as well as on two FH and six soft tissue sarcomas with known gene fusions; of the latter eight positive controls, the expected fusion transcript was found in all but one, while 2/8 FH with unknown genetic status showed fusion transcripts, including a novel KIRREL/PRKCA chimera. Thus, also a third member of the PRKC family is involved in FH tumorigenesis. We conclude that gene fusions involving PRKC genes occur in several morphological (regular, cellular, aneurysmal, epithelioid) and clinical (cutaneous, deep) subsets of FH, but they seem to account for only a minority of the cases. In epithelioid lesions, however, rearrangements of PRKC or ALK were seen, as mutually exclusive events, in the majority (5/7) of cases. Finally, the study also shows that RNA-Seq is a promising tool for identifying gene fusions in FFPE tissues.


International Journal of Cancer | 2015

Neuroblastoma Patient-Derived Orthotopic Xenografts Retain Metastatic Patterns and Geno- and Phenotypes of Patient Tumours.

Noémie Braekeveldt; Caroline Wigerup; David Gisselsson; Sofie Mohlin; My Merselius; Siv Beckman; Tord Jonson; Anna Börjesson; Torbjörn Backman; Irene Tadeo; Ana P. Berbegall; Ingrid Øra; Samuel Navarro; Rosa Noguera; Sven Påhlman; Daniel Bexell

Neuroblastoma is a childhood tumour with heterogeneous characteristics and children with metastatic disease often have a poor outcome. Here we describe the establishment of neuroblastoma patient‐derived xenografts (PDXs) by orthotopic implantation of viably cryopreserved or fresh tumour explants of patients with high risk neuroblastoma into immunodeficient mice. In vivo tumour growth was monitored by magnetic resonance imaging and fluorodeoxyglucose–positron emission tomography. Neuroblastoma PDXs retained the undifferentiated histology and proliferative capacity of their corresponding patient tumours. The PDXs expressed neuroblastoma markers neural cell adhesion molecule, chromogranin A, synaptophysin and tyrosine hydroxylase. Whole genome genotyping array analyses demonstrated that PDXs retained patient‐specific chromosomal aberrations such as MYCN amplification, deletion of 1p and gain of chromosome 17q. Thus, neuroblastoma PDXs recapitulate the hallmarks of high‐risk neuroblastoma in patients. PDX‐derived cells were cultured in serum‐free medium where they formed free‐floating neurospheres, expressed neuroblastoma gene markers MYCN, CHGA, TH, SYP and NPY, and retained tumour‐initiating and metastatic capacity in vivo. PDXs showed much higher degree of infiltrative growth and distant metastasis as compared to neuroblastoma SK‐N‐BE(2)c cell line‐derived orthotopic tumours. Importantly, the PDXs presented with bone marrow involvement, a clinical feature of aggressive neuroblastoma. Thus, neuroblastoma PDXs serve as clinically relevant models for studying and targeting high‐risk metastatic neuroblastoma.

Collaboration


Dive into the David Gisselsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge