Ingrid Øra
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ingrid Øra.
Nature | 2012
Jan J. Molenaar; Jan Koster; Danny A. Zwijnenburg; Peter van Sluis; Linda J. Valentijn; Ida van der Ploeg; Mohamed Hamdi; Johan van Nes; Bart A. Westerman; Jennemiek van Arkel; Marli E. Ebus; Franciska Haneveld; Arjan Lakeman; Linda Schild; Piet Molenaar; Peter Stroeken; Max M. van Noesel; Ingrid Øra; Evan E. Santo; Huib N. Caron; Ellen M. Westerhout; Rogier Versteeg
Neuroblastoma is a childhood tumour of the peripheral sympathetic nervous system. The pathogenesis has for a long time been quite enigmatic, as only very few gene defects were identified in this often lethal tumour. Frequently detected gene alterations are limited to MYCN amplification (20%) and ALK activations (7%). Here we present a whole-genome sequence analysis of 87 neuroblastoma of all stages. Few recurrent amino-acid-changing mutations were found. In contrast, analysis of structural defects identified a local shredding of chromosomes, known as chromothripsis, in 18% of high-stage neuroblastoma. These tumours are associated with a poor outcome. Structural alterations recurrently affected ODZ3, PTPRD and CSMD1, which are involved in neuronal growth cone stabilization. In addition, ATRX, TIAM1 and a series of regulators of the Rac/Rho pathway were mutated, further implicating defects in neuritogenesis in neuroblastoma. Most tumours with defects in these genes were aggressive high-stage neuroblastomas, but did not carry MYCN amplifications. The genomic landscape of neuroblastoma therefore reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Annika Jögi; Ingrid Øra; Helén Nilsson; Åsa Lindeheim; Yuichi Makino; Lorenz Poellinger; Håkan Axelson; Sven Påhlman
Insufficient oxygen and nutrient supply often restrain solid tumor growth, and the hypoxia-inducible factors (HIF) 1α and HIF-2α are key transcription regulators of phenotypic adaptation to low oxygen levels. Moreover, mouse gene disruption studies have implicated HIF-2α in embryonic regulation of tyrosine hydroxylase, a hallmark gene of the sympathetic nervous system. Neuroblastoma tumors originate from immature sympathetic cells, and therefore we investigated the effect of hypoxia on the differentiation status of human neuroblastoma cells. Hypoxia stabilized HIF-1α and HIF-2α proteins and activated the expression of known hypoxia-induced genes, such as vascular endothelial growth factor and tyrosine hydroxylase. These changes in gene expression also occurred in hypoxic regions of experimental neuroblastoma xenografts grown in mice. In contrast, hypoxia decreased the expression of several neuronal/neuroendocrine marker genes but induced genes expressed in neural crest sympathetic progenitors, for instance c-kit and Notch-1. Thus, hypoxia apparently causes dedifferentiation both in vitro and in vivo. These findings suggest a novel mechanism for selection of highly malignant tumor cells with stem-cell characteristics.
Cancer Research | 2009
Johannes H. Schulte; Soyoung Lim; Alexander Schramm; Nicolaus Friedrichs; Jan Koster; Rogier Versteeg; Ingrid Øra; Kristian W. Pajtler; Ludger Klein-Hitpass; Steffi Kuhfittig-Kulle; Eric Metzger; Roland Schüle; Angelika Eggert; Reinhard Buettner; Jutta Kirfel
Aberrant epigenetic changes in DNA methylation and histone acetylation are hallmarks of most cancers, whereas histone methylation was previously considered to be irreversible and less versatile. Recently, several histone demethylases were identified catalyzing the removal of methyl groups from histone H3 lysine residues and thereby influencing gene expression. Neuroblastomas continue to remain a clinical challenge despite advances in multimodal therapy. Here, we address the functional significance of the chromatin-modifying enzyme lysine-specific demethylase 1 (LSD1) in neuroblastoma. LSD1 expression correlated with adverse outcome and was inversely correlated with differentiation in neuroblastic tumors. Differentiation of neuroblastoma cells resulted in down-regulation of LSD1. Small interfering RNA-mediated knockdown of LSD1 decreased cellular growth, induced expression of differentiation-associated genes, and increased target gene-specific H3K4 methylation. Moreover, LSD1 inhibition using monoamine oxidase inhibitors resulted in an increase of global H3K4 methylation and growth inhibition of neuroblastoma cells in vitro. Finally, targeting LSD1 reduced neuroblastoma xenograft growth in vivo. Here, we provide the first evidence that a histone demethylase, LSD1, is involved in maintaining the undifferentiated, malignant phenotype of neuroblastoma cells. We show that inhibition of LSD1 reprograms the transcriptome of neuroblastoma cells and inhibits neuroblastoma xenograft growth. Our results suggest that targeting histone demethylases may provide a novel option for cancer therapy.
Cell | 2010
Michael Holzel; Sidong Huang; Jan Koster; Ingrid Øra; Arjan Lakeman; Huib N. Caron; Wouter Nijkamp; Jing Xie; Tom Callens; Shahab Asgharzadeh; Robert C. Seeger; Ludwine Messiaen; Rogier Versteeg; René Bernards
Retinoic acid (RA) induces differentiation of neuroblastoma cells in vitro and is used with variable success to treat aggressive forms of this disease. This variability in clinical response to RA is enigmatic, as no mutations in components of the RA signaling cascade have been found. Using a large-scale RNAi genetic screen, we identify crosstalk between the tumor suppressor NF1 and retinoic acid-induced differentiation in neuroblastoma. Loss of NF1 activates RAS-MEK signaling, which in turn represses ZNF423, a critical transcriptional coactivator of the retinoic acid receptors. Neuroblastomas with low levels of both NF1 and ZNF423 have extremely poor outcome. We find NF1 mutations in neuroblastoma cell lines and in primary tumors. Inhibition of MEK signaling downstream of NF1 restores responsiveness to RA, suggesting a therapeutic strategy to overcome RA resistance in NF1-deficient neuroblastomas.
Journal of Clinical Oncology | 2014
Gudrun Schleiermacher; Niloufar Javanmardi; Virginie Bernard; Quentin Leroy; Julie Cappo; Thomas Rio Frio; Gaëlle Pierron; Eve Lapouble; Valérie Combaret; Franki Speleman; Bram De Wilde; Anna Djos; Ingrid Øra; Fredrik Hedborg; Catarina Träger; Britt-Marie Holmqvist; Jonas Abrahamsson; Michel Peuchmaur; Jean Michon; Isabelle Janoueix-Lerosey; Per Kogner; Olivier Delattre; Tommy Martinsson
PURPOSE In neuroblastoma, the ALK receptor tyrosine kinase is activated by point mutations. We investigated the potential role of ALK mutations in neuroblastoma clonal evolution. METHODS We analyzed ALK mutations in 54 paired diagnosis-relapse neuroblastoma samples using Sanger sequencing. When an ALK mutation was observed in one paired sample, a minor mutated component in the other sample was searched for by more than 100,000× deep sequencing of the relevant hotspot, with a sensitivity of 0.17%. RESULTS All nine ALK-mutated cases at diagnosis demonstrated the same mutation at relapse, in one case in only one of several relapse nodules. In five additional cases, the mutation seemed to be relapse specific, four of which were investigated by deep sequencing. In two cases, no mutation evidence was observed at diagnosis. In one case, the mutation was present at a subclonal level (0.798%) at diagnosis, whereas in another case, two different mutations resulting in identical amino acid changes were detected, one only at diagnosis and the other only at relapse. Further evidence of clonal evolution of ALK-mutated cells was provided by establishment of a fully ALK-mutated cell line from a primary sample with an ALK-mutated cell population at subclonal level (6.6%). CONCLUSION In neuroblastoma, subclonal ALK mutations can be present at diagnosis with subsequent clonal expansion at relapse. Given the potential of ALK-targeted therapy, the significant spatiotemporal variation of ALK mutations is of utmost importance, highlighting the potential of deep sequencing for detection of subclonal mutations with a sensitivity 100-fold that of Sanger sequencing and the importance of serial samplings for therapeutic decisions.
The Journal of Pathology | 2014
Charles Walther; Johnbosco Tayebwa; Henrik Lilljebjörn; Linda Magnusson; Jenny Nilsson; Fredrik Vult von Steyern; Ingrid Øra; Henryk A. Domanski; Thoas Fioretos; Karolin Hansén Nord; Christopher D. M. Fletcher; Fredrik Mertens
Pseudomyogenic haemangioendothelioma (PHE) is an intermediate malignant vascular soft tissue tumour primarily affecting children and young adults. The molecular basis of this neoplasm is unknown. We here used chromosome banding analysis, fluorescence in situ hybridization (FISH), mRNA sequencing, RT–PCR and quantitative real‐time PCR on a series of morphologically well‐characterized PHEs to show that a balanced translocation, t(7;19)(q22;q13), detected as the sole cytogenetic aberration in two cases, results in fusion of the SERPINE1 and FOSB genes. This translocation has not been observed in any other bone or soft tissue tumour. Interphase FISH on sections from eight additional PHEs identified the same SERPINE1–FOSB fusion in all cases. The role of SERPINE1, which is highly expressed in vascular cells, in this gene fusion is probably to provide a strong promoter for FOSB, which was found to be expressed at higher levels in PHEs than in other soft tissue tumours. FOSB encodes a transcription factor belonging to the FOS family of proteins, which, together with members of the JUN family of transcription factors, are major components of the activating protein 1 (AP‐1) complex. Further studies are needed to understand the cellular impact of the aberrant expression of the FOSB gene, but as the t(7;19) resulting in the SERPINE1–FOSB fusion seems to be pathognomonic for PHE, FISH or RT–PCR could be useful for differential diagnostic purposes. Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk
Clinical Cancer Research | 2004
Jenny Karlsson; Ingrid Øra; Isabella Pörn-Ares; Sven Påhlman
Purpose: On the basis of clinical studies showing that arsenic trioxide (As2O3), via an apoptotic mechanism, and with minimal toxicity induces complete remission in patients with refractory acute promyelocytic leukemia and that multidrug-resistant and p53-mutated neuroblastoma cells are sensitive to As2O3 both in vitro and in vivo, we searched for molecular mechanisms involved in the As2O3-induced neuroblastoma cell death. Experimental Design: We have studied the effect of As2O3 on the expression and cellular localization of proteins involved in drug-induced death in two neuroblastoma cell lines with intact p53 and two with mutated p53, the latter two displaying multidrug resistance. Results: As2O3 provoked Bax expression in all tested neuroblastoma cell lines, including SK-N-BE(2) cells with mutated p53 and LA-N-1 cells, which have a deleted p53. In all cell lines exposed to As2O3, p21 Bax was proteolytically cleaved in a calpain-dependent way into the more proapoptotic p18 Bax, which was detected exclusively in a mitochondria-enriched subcellular fraction. As2O3 also caused an increase of cytoplasmic cytochrome c, translocation of antiapoptosis-inducing factor to the nuclei, and a slight activation of caspase 3. However, inhibition of caspase 3 did not prevent cell death, whereas inhibition of Bax cleavage was associated with a decreased As2O3-induced cell death. Conclusions: We show that multidrug-resistant neuroblastoma cells die after exposure to As2O3, independent of functional p53, suggesting activation of a cytotoxic pathway different from that induced by conventional chemotherapeutic agents. We further propose that proteolytic activation of Bax is an important event in As2O3-induced cell death.
Proceedings of the National Academy of Sciences of the United States of America | 2010
David Gisselsson; Yuesheng Jin; David Lindgren; Johan Persson; Lennart Gisselsson; Sandra Hanks; Daniel Sehic; Linda Holmquist Mengelbier; Ingrid Øra; Nazneen Rahman; Fredrik Mertens; Felix Mitelman; Nils Mandahl
One extra chromosome copy (i.e., trisomy) is the most common type of chromosome aberration in cancer cells. The mechanisms behind the generation of trisomies in tumor cells are largely unknown, although it has been suggested that dysfunction of the spindle assembly checkpoint (SAC) leads to an accumulation of trisomies through failure to correctly segregate sister chromatids in successive cell divisions. By using Wilms tumor as a model for cancers with trisomies, we now show that trisomic cells can form even in the presence of a functional SAC through tripolar cell divisions in which sister chromatid separation proceeds in a regular fashion, but cytokinesis failure nevertheless leads to an asymmetrical segregation of chromosomes into two daughter cells. A model for the generation of trisomies by such asymmetrical cell division accurately predicted several features of clones having extra chromosomes in vivo, including the ratio between trisomies and tetrasomies and the observation that different trisomies found in the same tumor occupy identical proportions of cells and colocalize in tumor tissue. Our findings provide an experimentally validated model explaining how multiple trisomies can occur in tumor cells that still maintain accurate sister chromatid separation at metaphase–anaphase transition and thereby physiologically satisfy the SAC.
Seminars in Cancer Biology | 2011
Ingrid Øra; Angelika Eggert
Close international collaboration between pediatric oncologists has led to marked improvements in the cure of patients, seen as a long-term overall survival rate of about 80%. Despite this progress, neuroblastoma remains a challenging disease for both clinicians and researchers. Major clinical problems include lack of acceptable cure rates in high-risk neuroblastoma and potential overtreatment of subsets of patients at low and intermediate risk of the disease. Many years of intensive international cooperation have recently led to a promising joint effort to further improve risk classification for treatment stratification, the new International Neuroblastoma Risk Group Classification System. This approach will facilitate comparison of the results of clinical trials performed by different international collaborative groups. This, in turn, should accelerate refinement of risk stratification and thereby aid selection of appropriate therapies for individual patients. To be able to identify new therapeutic modalities, it will be necessary to elucidate the pathogenesis of the different subtypes of neuroblastoma. Basic and translational research have provided new tools for molecular characterization of blood and tumor samples including high-throughput technologies for analysis of DNA, mRNAs, microRNAs and other non-coding RNAs, as well as proteins and epigenetic markers. Most of these studies are array-based in design. In neuroblastoma research they aim to refine risk group stratification through incorporation of molecular tumor fingerprints and also to enable personalized treatment modalities by describing the underlying pathogenesis and aberrant signaling pathways in individual tumors. To make optimal use of these new technologies for the benefit of the patient, it is crucial to have a systematic and detailed documentation of both clinical and molecular data from diagnosis through treatment to follow-up. Close collaboration between clinicians and basic scientists will provide access to combined clinical and molecular data sets and will create more efficient steps in response to the remaining treatment challenges. This review describes the current efforts and trends in neuroblastoma research from a clinical perspective in order to highlight the urgent clinical problems we must address together with basic researchers.
Experimental Cell Research | 2008
Ingrid Revet; Gerda Huizenga; Alvin Chan; Jan Koster; Richard Volckmann; Peter van Sluis; Ingrid Øra; Rogier Versteeg; Dirk Geerts
Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneural gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages.