Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David H. Gent is active.

Publication


Featured researches published by David H. Gent.


Phytopathology | 2011

Perceptions of Risk, Risk Aversion, and Barriers to Adoption of Decision Support Systems and Integrated Pest Management: An Introduction

David H. Gent; Erick De Wolf; Sj Pethybridge

Rational management of plant diseases, both economically and environmentally, involves assessing risks and the costs associated with both correct and incorrect tactical management decisions to determine when control measures are warranted. Decision support systems can help to inform users of plant disease risk and thus assist in accurately targeting events critical for management. However, in many instances adoption of these systems for use in routine disease management has been perceived as slow. The under-utilization of some decision support systems is likely due to both technical and perception constraints that have not been addressed adequately during development and implementation phases. Growers perceptions of risk and their aversion to these perceived risks can be reasons for the slow uptake of decision support systems and, more broadly, integrated pest management (IPM). Decision theory provides some tools that may assist in quantifying and incorporating subjective and/or measured probabilities of disease occurrence or crop loss into decision support systems. Incorporation of subjective probabilities into IPM recommendations may be one means to reduce grower uncertainty and improve trust of these systems because management recommendations could be explicitly informed by growers perceptions of risk and economic utility. Ultimately though, we suggest that an appropriate measure of the value and impact of decision support systems is grower education that enables more skillful and informed management decisions independent of consultation of the support tool outputs.


Annual Review of Phytopathology | 2015

Epidemiology and Population Biology of Pseudoperonospora cubensis: A Model System for Management of Downy Mildews

P. S. Ojiambo; David H. Gent; L. M. Quesada-Ocampo; M. K. Hausbeck; Gerald J. Holmes

The resurgence of cucurbit downy mildew has dramatically influenced production of cucurbits and disease management systems at multiple scales. Long-distance dispersal is a fundamental aspect of epidemic development that influences the timing and extent of outbreaks of cucurbit downy mildew. The dispersal potential of Pseudoperonospora cubensis appears to be limited primarily by sporangia production in source fields and availability of susceptible hosts and less by sporangia survival during transport. Uncertainty remains regarding the role of locally produced inoculum in disease outbreaks, but evidence suggests multiple sources of primary inoculum could be important. Understanding pathogen diversity and population differentiation is a critical aspect of disease management and an active research area. Underpinning advances in our understanding of pathogen biology and disease management has been the research capacity and coordination of stakeholders, scientists, and extension personnel. Concepts and approaches developed in this pathosystem can guide future efforts when responding to incursions of new or reemerging downy mildew pathogens.


Phytopathology | 2011

Genetic and Pathogenic Relatedness of Pseudoperonospora cubensis and P. humuli

Melanie N. Mitchell; Cynthia M. Ocamb; Niklaus J. Grünwald; Leah E. Mancino; David H. Gent

The most economically important plant pathogens in the genus Pseudoperonospora (family Peronosporaceae) are Pseudoperonospora cubensis and P. humuli, causal agents of downy mildew on cucurbits and hop, respectively. Recently, P. humuli was reduced to a taxonomic synonym of P. cubensis based on internal transcribed spacer (ITS) sequence data and morphological characteristics. Nomenclature has many practical implications for pathogen identification and regulatory considerations; therefore, further clarification of the genetic and pathogenic relatedness of these organisms is needed. Phylogenetic analyses were conducted considering two nuclear and three mitochondrial loci for 21 isolates of P. cubensis and 14 isolates of P. humuli, and all published ITS sequences of the pathogens in GenBank. There was a consistent separation of the majority of the P. humuli isolates and the P. cubensis isolates in nuclear, mitochondrial, and ITS phylogenetic analyses, with the exception of isolates of P. humuli from Humulus japonicus from Korea. The P. cubensis isolates appeared to contain the P. humuli cluster, which may indicate that P. humuli descended from P. cubensis. Host-specificity experiments were conducted with two reportedly universally susceptible hosts of P. cubensis and two hop cultivars highly susceptible to P. humuli. P. cubensis consistently infected the hop cultivars at very low rates, and sporangiophores invariably emerged from necrotic or chlorotic hypersensitive-like lesions. Only a single sporangiophore of P. humuli was observed on a cucurbit plant during the course of the studies. Together, molecular data and host specificity indicate that there are biologically relevant characteristics that differentiate P. cubensis and P. humuli that may be obfuscated if P. humuli were reduced to a taxonomic synonym of P. cubensis. Thus, we recommend retaining the two species names P. cubensis and P. humuli until the species boundaries can be resolved unambiguously.


Euphytica | 2011

QTL mapping of powdery mildew susceptibility in hop (Humulus lupulus L.)

John A. Henning; M. Shaun Townsend; David H. Gent; Nahla V. Bassil; Paul Matthews; Emily J. Buck; Ron Beatson

Hop powdery mildew [Podosphaera macularis (Wallr.) U. Braun & S. Takam.] is best controlled via the production of resistant varieties. Recent evidence supports selection against plant susceptibility genes to fungal pathogens as a more durable resistance mechanism than selection for resistance genes. The objective of this study was to identify molecular-based QTLs, their genetic effects and epistasis among QTLs associated with susceptibility to powdery mildew. Parents and offspring from the cross, ‘Perle’xa0×xa0‘USDA 19058M’, were clonally replicated and inoculated in a greenhouse using a CRD experimental design in Corvallis, OR. DNA was extracted, purified and analyzed via three different marker systems. Analysis of the resulting markers was based upon the “two-way pseudo-testcross” procedure. QTL mapping using multiple interval mapping and Bayesian interval mapping analyses were performed using WinQTL Cartographer 2.5_003. Comparison amongst mapping analyses identified three persistent QTLs on three linkage groups without significant epistatic effect upon expression. The persistent QTL on linkage group C7 had both additive and dominant effects controlling phenotype expression. The presence or absence of the two AFLP markers bordering the QTL on C7 defined susceptibility in offspring. This is the first report in hop identifying molecular markers linked to QTLs associated with disease susceptibility.


Phytopathology | 2004

Polyphasic Characterization of Xanthomonas Strains from Onion

David H. Gent; Howard F. Schwartz; Carol A. Ishimaru; Frank J. Louws; Robert A. Cramer; Christopher B. Lawrence

ABSTRACT Xanthomonas leaf blight has become an increasingly important disease of onion, but the diversity among Xanthomonas strains isolated from onion is unknown, as is their relationship to other species and pathovars of Xanthomonas. Forty-nine Xanthomonas strains isolated from onion over 27 years from 10 diverse geographic regions were characterized by pathogenicity to onion and dry bean, fatty acid profiles, substrate utilization patterns (Biolog), bactericide resistance, repetitive sequence-based polymerase chain reaction fingerprinting, rDNA internally transcribed spacer (ITS) region, and hrp b6 gene sequencing. Multiplication of onion Xanthomonas strain R-O177 was not different from X. axonopodis pv. phaseoli in dry bean, but typical common bacterial blight disease symptoms were absent in dry bean. Populations from each geographical region were uniformly sensitive to 100 mug of CuSO(4), 100 mug of ZnSO(4), and 100 mug of streptomycin sulfate per ml. Biolog substrate utilization and fatty acid profiles revealed close phenoltypic relatedness between onion strains of Xanthomonas and X. axonopodis pv. dieffenbachiae (57% of strains) and X. arboricola pv. poinsettiicola (37% of strains), respectively. A logistic regression model based on fatty acid composition and substrate utilization classified 69% of strains into their geographical region of origin. Sequencing of a portion of the hrp B6 gene from 24 strains and ITS region from 25 strains revealed greater than 97% sequence similarity among strains. DNA fingerprinting revealed five genotype groups within onion strains of Xanthomonas and a high degree of genetic diversity among geographical regions of origin. Based on pathogenicity to onion, carbon substrate utilization, fatty acid profiles, rDNA genetic diversity, and genomic fingerprints, we conclude that the strains examined in this study are pathovar X. axonopodis pv. allii. Implications of genetic and phenotypic diversity within X. axonopodis pv. allii are discussed in relation to an integrated pest management program.


Journal of Economic Entomology | 2009

Effects of Powdery Mildew Fungicide Programs on Twospotted Spider Mite (Acari: Tetranychidae), Hop Aphid (Hemiptera: Aphididae), and Their Natural Enemies in Hop Yards

David H. Gent; David G. James; Lawrence C. Wright; D. J. Brooks; James D. Barbour; Amy J. Dreves; Glenn C. Fisher; Vaughn M. Walton

ABSTRACT n Twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), and hop aphid, Phorodon humuli (Schrank) (Hemiptera: Aphididae), are the most important arthropod pests of hop (Humulus lupulus L.) in the Northern Hemisphere. A potential barrier for greater adoption of conservation biological control strategies for spider mites and hop aphid is the extensive use of fungicides for management of hop powdery mildew, Podosphaera macularis (Wallr.:Fr.) U. Braun & S. Takamatsu. Field studies conducted in experimental plots in Oregon and Washington in 2005 and 2006 quantified the effects of powdery mildew fungicide programs (i.e., sulfur, paraffinic oil, and synthetic fungicides) on arthropod pests and natural enemies on hop. Fungicide treatment signifi-cantly affected spider mite populations in all four studies. Multiple applications of sulfur fungicides applied before burr development resulted in 1.4-3.3-fold greater spider mite populations during summer. Near the cessation of the sulfur applications, or after a lag of 20–30 d, spider mite populations increased significantly faster on sulfur treated plants compared with water-treated plants in three of four experiments. The effect of paraffinic oil on spider mites was varied, leading to exacerbation of spider mites in Oregon and Washington in 2005, suppression of mites in Oregon in 2006, and no significant effect compared with water in Washington in 2006. Significant relative treatment effects for cone damage due to spider mite feeding were detected in Oregon in 2005 in plots treated with sulfur and paraffinic oil compared with water and synthetic fungicides. Mean populations of hop aphids were similar among treatments in Oregon, although sulfur treatment suppressed hop aphid populations in Washington in 2005 and 2006. Populations of individual predacious insect species and cumulative abundance of macropredators were not consistently suppressed or stimulated by treatments in all trials. However, predatory mite abundance in Washington was affected by fungicide treatments, with plots treated with sulfur consistently having 10-fold fewer phytoseiids per leaf compared with the other treatments. Based on the results of these studies, powdery mildew fungicide programs that minimize or eliminate applications of sulfur and paraffinic oil would tend to conserve predatory mites and minimize the severity of spider mite outbreaks. However, mechanisms other than direct or indirect toxicity to phytoseiid mites likely are associated with exacerbation of spider mite outbreaks on hop.


Phytopathology | 2005

Pathogenic and Genetic Relatedness Among Xanthomonas axonopodis pv. allii and Other Pathovars of X. axonopodis

David H. Gent; Abdulwahid Al-Saadi; Dean W. Gabriel; Frank J. Louws; Carol A. Ishimaru; Howard F. Schwartz

ABSTRACT Xanthomonas axonopodis pv. allii is phenotypically and genetically diverse and its relationship to other X. axonopodis pathovars within DNA homology group 9.2 is unknown. In growth chamber experiments, disease symptoms were produced on onion only by inoculation with X. axonopodis pv. allii. Citrus bacterial spot symptoms were induced by X. axonopodis pvs. alfalfae, itrumelo, and allii on Duncan grapefruit and key lime. X. axonopodis pv. allii multiplication and persistence in Duncan grapefruit were equal to those of an aggressive strain of X. axonopodis pv. citrumelo, but populations of X. axonopodis pvs. alfalfae, betlicola, citrumelo, phaseoli, and vesicatoria were 1.3 to 4.0 log units less than X. axonopodis pv. allii in onion. Genomic fingerprinting by repetitive sequence- based polymerase chain reaction demonstrated that X. axonopodis pvs. allii, alfalfae, and citrumelo are distinct from other Xanthomonas species and X. axonopodis pathovars, but these pathovars were indistinguishable from each other. Three genotype groups were apparent among DNA homology group 9.2 strains, and generally correspond to the aggressiveness and genotype groups previously described for X. axonopodis pv. citrumelo. X. axonopodis pvs. allii, alfalfae, and citrumelo appear to have recently diverged from a common ancestral strain.


Canadian Journal of Plant Pathology-revue Canadienne De Phytopathologie | 2015

Pseudoperonospora cubensis and P. humuli detection using species-specific probes and high definition melt curve analysis

Carly F. Summers; Nanci L. Adair; David H. Gent; Margaret T. McGrath; Christine D. Smart

Abstract Real-time PCR assays using locked nucleic acid (LNA) probes and high resolution melt (HRM) analysis were developed for molecular differentiation of Pseudoperonospora cubensis and P. humuli, causal agents of cucurbit and hop downy mildew, respectively. The assays were based on a previously identified single nucleotide polymorphism (SNP) in the cytochrome oxidase subunit II (cox2) gene that differentiates the two species. Sequencing of the same region from 15 P. cubensis isolates collected in New York State for the current study confirmed that all isolates shared the conserved SNP. LNA probes were specific and sensitive, detecting as few as 10 sporangia for both species and as little as 1 fg P. cubensis total DNA and 10 fg P. humuli total DNA. The LNA assay detected both pathogens from air sampled using spore traps placed in vegetable fields and a hop yard during the summers of 2013 and 2014 and correctly diagnosed symptomatic leaf tissue. High resolution melt analysis (HRM) correctly identified all tested isolates as well as those isolates from symptomatic plants collected in the field. The LNA and HRM assays correctly identified both organisms when tested independently in a second laboratory. The results confirm that the LNA and HRM assays developed can provide reliable identification of both species despite the high molecular similarity of the cox2 gene.


Phytopathology | 2011

Decision Aids for Multiple-Decision Disease Management as Affected by Weather Input Errors

W. F. Pfender; David H. Gent; Walter F. Mahaffee; L. B. Coop; A. D. Fox

Many disease management decision support systems (DSSs) rely, exclusively or in part, on weather inputs to calculate an indicator for disease hazard. Error in the weather inputs, typically due to forecasting, interpolation, or estimation from off-site sources, may affect model calculations and management decision recommendations. The extent to which errors in weather inputs affect the quality of the final management outcome depends on a number of aspects of the disease management context, including whether management consists of a single dichotomous decision, or of a multi-decision process extending over the cropping season(s). Decision aids for multi-decision disease management typically are based on simple or complex algorithms of weather data which may be accumulated over several days or weeks. It is difficult to quantify accuracy of multi-decision DSSs due to temporally overlapping disease events, existence of more than one solution to optimizing the outcome, opportunities to take later recourse to modify earlier decisions, and the ongoing, complex decision process in which the DSS is only one component. One approach to assessing importance of weather input errors is to conduct an error analysis in which the DSS outcome from high-quality weather data is compared with that from weather data with various levels of bias and/or variance from the original data. We illustrate this analytical approach for two types of DSS, an infection risk index for hop powdery mildew and a simulation model for grass stem rust. Further exploration of analysis methods is needed to address problems associated with assessing uncertainty in multi-decision DSSs.


Phytopathology | 2008

Spatial and Temporal Stability of the Estimated Parameters of the Binary Power Law

David H. Gent; William W. Turechek; Walter F. Mahaffee

The incidence of hop powdery mildew on leaves, caused by Podosphaera macularis, collected from 1,606 transects in 77 commercial hop yards in Oregon and Washington over 9 years was used to assess variability in heterogeneity of disease and the estimated binary power law parameters. Spatial analyses of data sets were conducted at the level of individual rows (row level) and multiple rows within a yard (yard level). The binary power law provided a good fit to all data sets, with R(2) values ranging from 0.933 to 0.993. At the row level, the intercept parameter ln(A(x)) was >0 for 8 years, but was not significantly greater than 0 in 2006. The parameter b was greater than 1 for all row-level data sets collected from 1999 to 2005, but was <1 in 2006 and not significantly different from 1 in 2007. Covariance analysis indicated the factor region affected ln(A(x)) in 3 years, and b in 2 years. Cultivar had an effect on ln(A(x)) in 3 years and b in year. At the yard level, ln(A(x)) was greater than 0 for 6 years, but in 2006 and 2007, ln(A(x)) was not significantly different from 0. The slope parameter b was greater than 1 in 6 years, but was not significantly different from 1 in 2006 and 2007. Differences in b among years were large enough to have practical implications for sample sizes and precision of fixed and sequential sampling. Although the binary power law parameter tended to be relatively stable, variability of the estimated parameters may have practical consequences for sampling precision and costs.

Collaboration


Dive into the David H. Gent's collaboration.

Top Co-Authors

Avatar

John A. Henning

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William W. Turechek

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter F. Mahaffee

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary G. Grove

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge